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Relational databases 

 Very good background

 Standard Query Language (SQL)

 ACID 

 Strong consistency, concurrency, recovery

 Lots of tools to use i.e: Reporting services, 
entity frameworks, ...
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SQL Databases
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Relational databases 

 Relational databases were 
not built for distributed 
applications.

 Joins are expensive

 Hard to scale horizontally 

 Expensive (product cost, 
hardware, Maintenance)
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Relational databases 

 In the relational database model, it is 
needed to join a large number of data 
tables
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Dealing with Big Data and Scalability

 Issues with scaling up when the dataset is 
just too big

 RDBMS were not designed to be 
distributed

 Traditional DBMSs are best designed to 
run well on a “single” machine 

◼ Larger volumes of data/operations requires to 
upgrade the server with faster CPUs or more 
memory known as  ‘Scaling up’ or ‘Vertical 
scaling’
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No SQL

 NoSQL stands for: 

◼ No Relational

◼ No RDBMS

◼ Not Only SQL 

 NoSQL is an umbrella term for all 
databases and data stores that don’t follow 
the RDBMS principles 
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NoSQL Definition

From www.nosql-database.org:

Next Generation Databases mostly addressing some of the 

points: being non-relational, distributed, open-source and 

horizontally scalable. The original intention has been 

modern web-scale databases. The movement began early 

2009 and is growing rapidly. 

Often more characteristics apply as: schema-free, easy 

replication support, simple API, eventually consistent / 

BASE (not ACID), a huge data amount, and more. 
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NoSQL History
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Characteristics of NoSQL databases

 Easy and frequent changes to DB

◼ Fast development

◼ Large data volumes (eg. Google)

◼ Schema less

 NoSQL solutions are designed to run on 
clusters or multi-node database solutions

 When not use:

◼ Financial Data

◼ Data requiring strict ACID compliance

◼ Business Critical Data
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NoSQLis getting more & more popular
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NoSQLData Models

 NoSQL databases are classified in four major data 
models:

◼ Key-value 

◼ Document

◼ Column family

◼ Graph
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Key-value data

 Simplest NOSQL databases

 The main idea is the use of a hash table 

 Access data (values) by strings called keys

 Data has no required format data may have any 
format



15

Key/Value stores

 Store data in a schema-less way 

 Store data as maps: HashMaps or associative 

arrays 

 Provide a very efficient average running time 
algorithm for accessing data 
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Use cases of key-value databases

 Session management

◼ A session-oriented application, such as a web 
application, starts a session when a user logs in to 
an application and is active until the user logs out 
or the session times out.

 Shopping cart

◼ An e-commerce website may receive billions of 
orders per second during the holiday shopping 
season

 Caching

◼ You can use a key-value database for storing data 
temporarily for faster retrieval
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Column wide

 Data are stored in a column-oriented way 

◼ Data isn’t stored as a single table but is stored 
by column families

◼ Unit of data is a set of key/value pairs 

 Identified by “row-key” 

 Ordered and sorted based on row-key
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Column Wide

 Can write data with a large number of (dynamic) 
columns to a data table

 The cartItems part along with the username key 
and cardId will be written serially to the data 
stream

 Therefore, it helps to quickly retrieve data during 
customer purchases
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Cassandra Column wide

 Cassandra stands out with the advantage 
of being able to write and read at any 
computer node in the cluster, especially 
writing speed
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Data on Cluster

 Determine the location of the data access 
node based on the partition key
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Cassandra Column wide
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Cassandra Column wide

 Some statistics about Facebook Search (using 
Cassandra)

 MySQL > 50 GB Data

◼ Writes Average : ~300 ms

◼ Reads Average : ~350 ms

 Rewritten with Cassandra > 50 GB Data

◼ Writes Average : 0.12 ms

◼ Reads Average : 15 ms
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Graph Databases

• Nodes: These are the instances of data that represent 
objects which is to be tracked

• Edges: As we already know edges represent 
relationships between nodes

• Properties: It represents information associated with 
nodes.

25
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Graph Databases

 While existing relational databases can 
store these relationships, they navigate 
them with expensive JOIN operations or 
cross-lookups, often tied to a rigid schema

 It turns out that "relational" databases 
handle relationships poorly
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Graph Databases

 In a graph database, there are no JOINs or 
lookups. Relationships are stored natively 
alongside the data elements (the nodes)

 Everything about the system is optimized 
for traversing through data quickly
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Graph databases

 Graph databases address big challenges 
many of us tackle daily. Modern data 
problems often involve many-to-many 
relationships with heterogeneous data that 
set up needs to:

◼ Navigate deep hierarchies

◼ Find hidden connections between distant 
object

◼ Discover inter-relationships between 
objects
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Document Databases (Document Store)

 Documents 

◼ Loosely structured sets of key/value pairs in 
documents, e.g., XML, JSON, BSON 

◼ Are addressed in the database via a unique key 

◼ Documents are treated as a whole, avoiding 
splitting a document into its constituent 
name/value pairs 

 Notable for: 

◼ MongoDB (used in FourSquare, Github, and 
more) 

◼ CouchDB (used in Apple, BBC, Canonical, 
Cern, and more)
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Document Data
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JSONdocument

 Field names allow you to understand what kind of 
data is held within a document with just a glance 
Documents in document databases are self-
describing
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Document Features

• Flexible Schema: Overall schema is very much 
flexible to support this statement one must know 
that not all documents in a collection need to 
have the same fields

• Distributed: Document data models are very 
much dispersed which is the reason behind 
horizontal scaling and distribution of data
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CAP Theorem: Two out of Three

 CAP theorem – At most two properties on three 
can be addressed 
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Performance

 Every database has its advantages and 
disadvantages 

 NoSQL is a set of concepts, ideas, 
technologies, and software dealing with 

◼ Big data 

◼ Sparse un/semi-structured data

◼ High horizontal scalability 

◼ Massive parallel processing 

  Different applications, goals, targets, and 
approaches need different NoSQL solutions 



MONGODB
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Terminology

Relational (SQL) MongoDB

Database Database

Table Collection

Index Index

Row Document

Column Field

Dynamic
Typing

B-tree
(range-
based)

Think JSON

Primitive types + 
arrays, 

documents
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Document Database

 MongoDB documents are similar to JSON objects
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MongoDB Document

◼ _id holds an ObjectId

◼ name holds an embedded document that 
contains the fields first and last

◼ birth and death hold values of the Date type

◼ contribs holds an array of strings.

◼ views holds a value of the NumberLong type.
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The _id Field

 In MongoDB, each document stored in a 

collection requires a unique _id field that acts 

as a primary key

 If an inserted document omits the _id field, 

the MongoDB driver automatically generates 

an ObjectId for the _id field
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Data Types

 Null

◼ The null type can be used to represent both a 
null value and a nonexistent field:

◼ {"x" : null}

 Boolean

◼ There is a boolean type, which can be used for 
the values true and false:

◼ {"x" : true}

 Number

◼ The shell defaults to using 64-bit floating-point 
numbers. Thus, these numbers



43

Data Types

 String

◼ Any string of UTF-8 characters can be 
represented using the string type:

◼ {"x" : "foobar"}

 Date

◼ MongoDB stores dates as 64-bit integers 
representing milliseconds since the Unix epoch 
(January 1, 1970). The time zone is not stored:

◼ {"x" : new Date()}
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Data Types

 Array

◼ Sets or lists of values can be represented as 
arrays:

◼ {"x" : ["a", "b", "c"]}

 Embedded document

◼ Documents can contain entire documents 
embedded as values in a parent document:

◼ {"x" : {"foo" : "bar"}}

 Object ID

◼ An object ID is a 12-byte ID for documents:

◼ {"x" : ObjectId()}
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The advantages of using documents 

 Embedded documents and arrays reduce the 
need for expensive joins

 Support dynamic schema supports

MongoDB stores data records 
as documents (specifically BSON documents) 
which are gathered together in collections

 The maximum BSON document size is 16 MB

https://www.mongodb.com/docs/manual/reference/glossary/#std-term-document
https://www.mongodb.com/docs/manual/core/document/#std-label-bson-document-format
https://www.mongodb.com/docs/manual/reference/glossary/#std-term-collection
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Inserting Documents

 To insert a single document, use the 
collection’s insertOne method:

db.movies.insertOne({"title" : "Stand by Me"})

 insertOne will add an "_id" key to the 
document (if you do not supply one) and store 
the document in MongoDB
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InsertMany

 This method enables you to pass an array of 
documents to the database

◼db.movies.insertMany([{"title" : 
"Ghostbusters"},{"title" : "E.T."},{"title" : 
"Blade Runner"}]);
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Removing Documents

 The CRUD API provides deleteOne and deleteMany 
for this purpose. Both of these methods take a filter 
document as their first parameter

◼db.movies.deleteOne({"_id" : 4})

 To delete all the documents that match a filter, use 
deleteMany:

◼db.movies.deleteMany({"year" : 1984})
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Updating Documents

 Once a document is stored in the database, it can be 
changed using one of several update methods: 

updateOne, updateMany, and replaceOne

◼ updateOne and updateMany each take a filter 
document as their first parameter and a 
modifier document as the second parameter 

◼ replaceOne also takes a filter as the first 
parameter, but as the second parameter 
replaceOne expects a document with which it 
will replace the document matching the filter
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Update Operators

"$set" sets the value of a field. If the field 
does not yet exist, it will be created

For example: If the user wanted to store 
his favorite book in his profile, he could 
add it using "$set":

◼db.users.updateOne({"name" : "joe"}, 
{"$set" : {"favorite book" : "Green Eggs 
and Ham"}})
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Update Operators

 You can remove the key altogether with 
"$unset“

◼ db.users.updateOne({"name" : "joe"}, {"$unset" : 
{"favorite book" : 1}})
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Introduction to find

 The find method is used to perform queries in 
MongoDB. Querying returns a subset of documents 
in a collection

◼ db.users.find({"age" : 27})

 Multiple conditions can be strung together by adding 
more key/value pairs to the query document

◼ db.users.find({"username" : "joe", "age" : 27})
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Query Criteria

 Queries can go beyond the exact matching

 "$lt", "$lte", "$gt", and "$gte" are all comparison 
operators, corresponding to <,<=, >, and >=, 
respectively. 

 They can be combined to look for a range of values.

◼ db.users.find({"age" : {"$gte" : 18, "$lte" : 30}})



55

OR query

 There are two ways to do an OR query in 
MongoDB. "$in" can be used to query for a 
variety of values for a single key 

 "$or" is more general; it can be used to query 
for any of the given values across multiple keys
◼ db.inventory.find( { $or: [ { status: "A" }, { 
qty: { $lt: 30 } } ] } )
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$not

 "$not" is a meta conditional: it can be applied 
on top of any other criteria
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Querying Arrays

 Querying for elements of an array is designed to behave 
the way querying for scalars does. For example, if the 
array is a list of fruits, like this:

   db.food.insertOne({"fruit" : ["apple", "banana", 
"peach"]})

 The following query will successfully match the 
document: 

      db.food.find({"fruit" : "banana"})
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Querying on Embedded Documents

{

"name" : {
"first" : "Joe",

"last" : "Schmoe"

},

"age" : 45

}

db.people.find({"name.first" : "Joe", "name.last" : 
"Schmoe"})
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aggregate() Method

 The aggregate() method uses the 
aggregation pipeline to process documents 
into aggregated results
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Example

https://www.geeksforgeeks.org/aggr
egation-in-mongodb/
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Accumulators

• sum: It sums numeric values for the documents in 
each group

• count: It counts total numbers of documents

• avg: It calculates the average of all given values from 
all documents

• min: It gets the minimum value from all the 
documents

• max: It gets the maximum value from all the 
documents

• first: It gets the first document from the grouping

• last: It gets the last document from the grouping
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Sharding

 Sharding refers to the process of splitting data 
up across machines; the term partitioning is 
also sometimes used to describe this concept

 It becomes possible to store more data and 
handle more load
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When to Shard

 Increase available RAM

 Increase available disk space

 Reduce load on a server

 Read or write data with greater throughput 
than a single mongod can handle
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MongoDB Sharding

MongoDB supports autosharding, which tries 
to both abstract the architecture away from 
the application and simplify the administration 
of such a system

MongoDB automates balancing data across 
shards and makes it easier to add and remove 
capacity
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MongoDB Sharding 
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Sharding on a Single-Machine Cluster

 We’ll start by setting up a quick cluster on a single 
machine. First, start a mongo shell with the --nodb 
and --norc options: $ mongo --nodb –norc

 Run the following in the mongo shell you just 
launched
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Connect to Mongos

 Next, you’ll connect to the mongos to play around with 
the cluster. Your entire cluster

  $ mongo –nodb

 Use this shell to connect to your cluster’s mongos. 

 Again, your mongos should be running on port 20009:

 db = (new Mongo("localhost:20009")).getDB("accounts")
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Sharding on a Single-Machine Cluster

 Start by inserting some data:

> for (var i=0; i<10000; i++) { 
db.users.insert({"username" : "user"+i, "created_at" : 
new Date()});}

> db.users.count()

10000

 As you can see, interacting with mongos works the 
same way as interacting with  standalone server does

 You can get an overall view of your cluster by running 
sh.status(). It will give you a summary of your shards, 
databases, and collections:
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Enable Sharding

 To shard a particular collection, first enable sharding 
on the collection’s database:

 sh.enableSharding("accounts")

 When you shard a collection, you choose a shard key. 
For example, if you chose to shard on "username", 
MongoDB would break up the data into ranges of 
usernames
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ShardingCollection

 To even create a shard key, the field(s) must be 
indexed. You have to create an index on the key you 
want to shard by:

 db.users.createIndex({"username" : 1})

 Now you can shard the collection by "username":

 sh.shardCollection("accounts.users", 
{"username" : 1}) 

The collection has been split up into 13 chunks, where 
each chunk is a subset of your data.
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Shardingkey

 Sharding is per-collection and range-based

 The highest-impact choice you make is the 
shard key:

◼ Random keys: good for writes, bad for reads

◼ Right-aligned index: bad for writes

◼ Small # of discrete keys: very bad

Ideal: balance writes, make reads routable by 
mongos. Optimal shard key selection is hard
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Choosing a Shard Key

 The most common ways people choose to split 
their data are via:

◼Ascending

◼Random

◼ Location-based keys
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Ascending Shard Keys

 Ascending shard keys are generally something like a 
"date" field or ObjectId—anything that steadily 
increases over time
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Randomly Distributed Shard Keys

 Randomly distributed keys could be 
usernames, email addresses, UUIDs, MD5 
hashes, or any other key that has no 
identifiable pattern in your dataset

 As writes are randomly distributed, the shards 
should grow at roughly the same rate, limiting 
the number of migrates that need to occur.
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Hashed Shard Key

 A hashed shard key can make any field randomly 
distributed, so it is a good choice 

 The trade-off is that you can never do a targeted 
range query with a hashed shard key. If you will not 
be doing range queries, though, hashed shard keys 
are a good option.
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Hashed Shard Key

 To create a hashed shard key, first create a hashed index:

 > db.users.createIndex({"username" : "hashed"})

 Next, shard the collection with:

 > sh.shardCollection("app.users", {"username" : 
"hashed"})
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Location-Based Shard Keys

 A location-based key is a key where 
documents with some similarity fall into a 
range based on this field. 

 This can be handy for both putting data close 
to its users and keeping related data together 
on disk
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Sharding setupexample

Primary Data Center Secondary Data Center

Shard 1
Priority 1

Shard 1
Priority 1

Shard 1
Priority 0

Shard 2
Priority 1

Shard 2
Priority 1

Shard 2
Priority 0

Shard 3
Priority 1

Shard 3
Priority 1

Shard 3
Priority 0

Config 1 Config 2 Config 3
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