
NOSQL

Lê Hồng Hải

UET-VNUH

2

Introduction1

NoSQL models2

When to use3

Overview

3

Relational databases

 Very good background

 Standard Query Language (SQL)

 ACID

 Strong consistency, concurrency, recovery

 Lots of tools to use i.e: Reporting services,
entity frameworks, ...

4

SQL Databases

5

Relational databases

 Relational databases were
not built for distributed
applications.

 Joins are expensive

 Hard to scale horizontally

 Expensive (product cost,
hardware, Maintenance)

6

Relational databases

 In the relational database model, it is
needed to join a large number of data
tables

7

Dealing with Big Data and Scalability

 Issues with scaling up when the dataset is
just too big

 RDBMS were not designed to be
distributed

 Traditional DBMSs are best designed to
run well on a “single” machine

◼ Larger volumes of data/operations requires to
upgrade the server with faster CPUs or more
memory known as ‘Scaling up’ or ‘Vertical
scaling’

8

No SQL

 NoSQL stands for:

◼ No Relational

◼ No RDBMS

◼ Not Only SQL

 NoSQL is an umbrella term for all
databases and data stores that don’t follow
the RDBMS principles

9

NoSQL Definition

From www.nosql-database.org:

Next Generation Databases mostly addressing some of the

points: being non-relational, distributed, open-source and

horizontally scalable. The original intention has been

modern web-scale databases. The movement began early

2009 and is growing rapidly.

Often more characteristics apply as: schema-free, easy

replication support, simple API, eventually consistent /

BASE (not ACID), a huge data amount, and more.

10

NoSQL History

11

Characteristics of NoSQL databases

 Easy and frequent changes to DB

◼ Fast development

◼ Large data volumes (eg. Google)

◼ Schema less

 NoSQL solutions are designed to run on
clusters or multi-node database solutions

 When not use:

◼ Financial Data

◼ Data requiring strict ACID compliance

◼ Business Critical Data

12

NoSQLis getting more & more popular

13

NoSQLData Models

 NoSQL databases are classified in four major data
models:

◼ Key-value

◼ Document

◼ Column family

◼ Graph

14

Key-value data

 Simplest NOSQL databases

 The main idea is the use of a hash table

 Access data (values) by strings called keys

 Data has no required format data may have any
format

15

Key/Value stores

 Store data in a schema-less way

 Store data as maps: HashMaps or associative

arrays

 Provide a very efficient average running time
algorithm for accessing data

16

Use cases of key-value databases

 Session management

◼ A session-oriented application, such as a web
application, starts a session when a user logs in to
an application and is active until the user logs out
or the session times out.

 Shopping cart

◼ An e-commerce website may receive billions of
orders per second during the holiday shopping
season

 Caching

◼ You can use a key-value database for storing data
temporarily for faster retrieval

17

Key-Value1

Column Wide2

Graph3

Document4

NoSQL Data Models

18

Column wide

 Data are stored in a column-oriented way

◼ Data isn’t stored as a single table but is stored
by column families

◼ Unit of data is a set of key/value pairs

 Identified by “row-key”

 Ordered and sorted based on row-key

19

Column Wide

 Can write data with a large number of (dynamic)
columns to a data table

 The cartItems part along with the username key
and cardId will be written serially to the data
stream

 Therefore, it helps to quickly retrieve data during
customer purchases

20

Cassandra Column wide

 Cassandra stands out with the advantage
of being able to write and read at any
computer node in the cluster, especially
writing speed

21

Data on Cluster

 Determine the location of the data access
node based on the partition key

22

Cassandra Column wide

23

Cassandra Column wide

 Some statistics about Facebook Search (using
Cassandra)

 MySQL > 50 GB Data

◼ Writes Average : ~300 ms

◼ Reads Average : ~350 ms

 Rewritten with Cassandra > 50 GB Data

◼ Writes Average : 0.12 ms

◼ Reads Average : 15 ms

24

Key-Value1

Column Wide2

Graph3

Document4

NoSQL Data Models

25

Graph Databases

• Nodes: These are the instances of data that represent
objects which is to be tracked

• Edges: As we already know edges represent
relationships between nodes

• Properties: It represents information associated with
nodes.

25

26

Graph Databases

 While existing relational databases can
store these relationships, they navigate
them with expensive JOIN operations or
cross-lookups, often tied to a rigid schema

 It turns out that "relational" databases
handle relationships poorly

27

Graph Databases

 In a graph database, there are no JOINs or
lookups. Relationships are stored natively
alongside the data elements (the nodes)

 Everything about the system is optimized
for traversing through data quickly

28

Graph databases

 Graph databases address big challenges
many of us tackle daily. Modern data
problems often involve many-to-many
relationships with heterogeneous data that
set up needs to:

◼ Navigate deep hierarchies

◼ Find hidden connections between distant
object

◼ Discover inter-relationships between
objects

29

Key-Value1

Column Wide2

Graph3

Document4

NoSQL Data Models

30

Document Databases (Document Store)

 Documents

◼ Loosely structured sets of key/value pairs in
documents, e.g., XML, JSON, BSON

◼ Are addressed in the database via a unique key

◼ Documents are treated as a whole, avoiding
splitting a document into its constituent
name/value pairs

 Notable for:

◼ MongoDB (used in FourSquare, Github, and
more)

◼ CouchDB (used in Apple, BBC, Canonical,
Cern, and more)

31

Document Data

32

JSONdocument

 Field names allow you to understand what kind of
data is held within a document with just a glance
Documents in document databases are self-
describing

33

Document Features

• Flexible Schema: Overall schema is very much
flexible to support this statement one must know
that not all documents in a collection need to
have the same fields

• Distributed: Document data models are very
much dispersed which is the reason behind
horizontal scaling and distribution of data

34

CAP Theorem: Two out of Three

 CAP theorem – At most two properties on three
can be addressed

35

Performance

 Every database has its advantages and
disadvantages

 NoSQL is a set of concepts, ideas,
technologies, and software dealing with

◼ Big data

◼ Sparse un/semi-structured data

◼ High horizontal scalability

◼ Massive parallel processing

 Different applications, goals, targets, and
approaches need different NoSQL solutions

MONGODB

37

Introduction1

Data types2

Querying3

Sharding4

MONGODB

38

Terminology

Relational (SQL) MongoDB

Database Database

Table Collection

Index Index

Row Document

Column Field

Dynamic
Typing

B-tree
(range-
based)

Think JSON

Primitive types +
arrays,

documents

39

Document Database

 MongoDB documents are similar to JSON objects

40

MongoDB Document

◼ _id holds an ObjectId

◼ name holds an embedded document that
contains the fields first and last

◼ birth and death hold values of the Date type

◼ contribs holds an array of strings.

◼ views holds a value of the NumberLong type.

41

The _id Field

 In MongoDB, each document stored in a

collection requires a unique _id field that acts

as a primary key

 If an inserted document omits the _id field,

the MongoDB driver automatically generates

an ObjectId for the _id field

42

Data Types

 Null

◼ The null type can be used to represent both a
null value and a nonexistent field:

◼ {"x" : null}

 Boolean

◼ There is a boolean type, which can be used for
the values true and false:

◼ {"x" : true}

 Number

◼ The shell defaults to using 64-bit floating-point
numbers. Thus, these numbers

43

Data Types

 String

◼ Any string of UTF-8 characters can be
represented using the string type:

◼ {"x" : "foobar"}

 Date

◼ MongoDB stores dates as 64-bit integers
representing milliseconds since the Unix epoch
(January 1, 1970). The time zone is not stored:

◼ {"x" : new Date()}

44

Data Types

 Array

◼ Sets or lists of values can be represented as
arrays:

◼ {"x" : ["a", "b", "c"]}

 Embedded document

◼ Documents can contain entire documents
embedded as values in a parent document:

◼ {"x" : {"foo" : "bar"}}

 Object ID

◼ An object ID is a 12-byte ID for documents:

◼ {"x" : ObjectId()}

45

The advantages of using documents

 Embedded documents and arrays reduce the
need for expensive joins

 Support dynamic schema supports

MongoDB stores data records
as documents (specifically BSON documents)
which are gathered together in collections

 The maximum BSON document size is 16 MB

https://www.mongodb.com/docs/manual/reference/glossary/#std-term-document
https://www.mongodb.com/docs/manual/core/document/#std-label-bson-document-format
https://www.mongodb.com/docs/manual/reference/glossary/#std-term-collection

46

Inserting Documents

 To insert a single document, use the
collection’s insertOne method:

db.movies.insertOne({"title" : "Stand by Me"})

 insertOne will add an "_id" key to the
document (if you do not supply one) and store
the document in MongoDB

47

InsertMany

 This method enables you to pass an array of
documents to the database

◼db.movies.insertMany([{"title" :
"Ghostbusters"},{"title" : "E.T."},{"title" :
"Blade Runner"}]);

48

Removing Documents

 The CRUD API provides deleteOne and deleteMany
for this purpose. Both of these methods take a filter
document as their first parameter

◼db.movies.deleteOne({"_id" : 4})

 To delete all the documents that match a filter, use
deleteMany:

◼db.movies.deleteMany({"year" : 1984})

49

Updating Documents

 Once a document is stored in the database, it can be
changed using one of several update methods:

updateOne, updateMany, and replaceOne

◼ updateOne and updateMany each take a filter
document as their first parameter and a
modifier document as the second parameter

◼ replaceOne also takes a filter as the first
parameter, but as the second parameter
replaceOne expects a document with which it
will replace the document matching the filter

50

Update Operators

"$set" sets the value of a field. If the field
does not yet exist, it will be created

For example: If the user wanted to store
his favorite book in his profile, he could
add it using "$set":

◼db.users.updateOne({"name" : "joe"},
{"$set" : {"favorite book" : "Green Eggs
and Ham"}})

51

Update Operators

 You can remove the key altogether with
"$unset“

◼ db.users.updateOne({"name" : "joe"}, {"$unset" :
{"favorite book" : 1}})

52

Introduction1

Data types2

Querying3

Sharding4

MONGODB

53

Introduction to find

 The find method is used to perform queries in
MongoDB. Querying returns a subset of documents
in a collection

◼ db.users.find({"age" : 27})

 Multiple conditions can be strung together by adding
more key/value pairs to the query document

◼ db.users.find({"username" : "joe", "age" : 27})

54

Query Criteria

 Queries can go beyond the exact matching

 "$lt", "$lte", "$gt", and "$gte" are all comparison
operators, corresponding to <,<=, >, and >=,
respectively.

 They can be combined to look for a range of values.

◼ db.users.find({"age" : {"$gte" : 18, "$lte" : 30}})

55

OR query

 There are two ways to do an OR query in
MongoDB. "$in" can be used to query for a
variety of values for a single key

 "$or" is more general; it can be used to query
for any of the given values across multiple keys
◼ db.inventory.find({ $or: [{ status: "A" }, {
qty: { $lt: 30 } }] })

56

$not

 "$not" is a meta conditional: it can be applied
on top of any other criteria

57

Querying Arrays

 Querying for elements of an array is designed to behave
the way querying for scalars does. For example, if the
array is a list of fruits, like this:

 db.food.insertOne({"fruit" : ["apple", "banana",
"peach"]})

 The following query will successfully match the
document:

 db.food.find({"fruit" : "banana"})

58

Querying on Embedded Documents

{

"name" : {
"first" : "Joe",

"last" : "Schmoe"

},

"age" : 45

}

db.people.find({"name.first" : "Joe", "name.last" :
"Schmoe"})

59

aggregate() Method

 The aggregate() method uses the
aggregation pipeline to process documents
into aggregated results

60

Example

https://www.geeksforgeeks.org/aggr
egation-in-mongodb/

61

Accumulators

• sum: It sums numeric values for the documents in
each group

• count: It counts total numbers of documents

• avg: It calculates the average of all given values from
all documents

• min: It gets the minimum value from all the
documents

• max: It gets the maximum value from all the
documents

• first: It gets the first document from the grouping

• last: It gets the last document from the grouping

62

Introduction1

Data types2

Querying3

Sharding4

MONGODB

63

Sharding

 Sharding refers to the process of splitting data
up across machines; the term partitioning is
also sometimes used to describe this concept

 It becomes possible to store more data and
handle more load

64

When to Shard

 Increase available RAM

 Increase available disk space

 Reduce load on a server

 Read or write data with greater throughput
than a single mongod can handle

65

MongoDB Sharding

MongoDB supports autosharding, which tries
to both abstract the architecture away from
the application and simplify the administration
of such a system

MongoDB automates balancing data across
shards and makes it easier to add and remove
capacity

66

MongoDB Sharding

67

Sharding on a Single-Machine Cluster

 We’ll start by setting up a quick cluster on a single
machine. First, start a mongo shell with the --nodb
and --norc options: $ mongo --nodb –norc

 Run the following in the mongo shell you just
launched

68

Connect to Mongos

 Next, you’ll connect to the mongos to play around with
the cluster. Your entire cluster

 $ mongo –nodb

 Use this shell to connect to your cluster’s mongos.

 Again, your mongos should be running on port 20009:

 db = (new Mongo("localhost:20009")).getDB("accounts")

69

Sharding on a Single-Machine Cluster

 Start by inserting some data:

> for (var i=0; i<10000; i++) {
db.users.insert({"username" : "user"+i, "created_at" :
new Date()});}

> db.users.count()

10000

 As you can see, interacting with mongos works the
same way as interacting with standalone server does

 You can get an overall view of your cluster by running
sh.status(). It will give you a summary of your shards,
databases, and collections:

70

Enable Sharding

 To shard a particular collection, first enable sharding
on the collection’s database:

 sh.enableSharding("accounts")

 When you shard a collection, you choose a shard key.
For example, if you chose to shard on "username",
MongoDB would break up the data into ranges of
usernames

71

ShardingCollection

 To even create a shard key, the field(s) must be
indexed. You have to create an index on the key you
want to shard by:

 db.users.createIndex({"username" : 1})

 Now you can shard the collection by "username":

 sh.shardCollection("accounts.users",
{"username" : 1})

The collection has been split up into 13 chunks, where
each chunk is a subset of your data.

72

Shardingkey

 Sharding is per-collection and range-based

 The highest-impact choice you make is the
shard key:

◼ Random keys: good for writes, bad for reads

◼ Right-aligned index: bad for writes

◼ Small # of discrete keys: very bad

Ideal: balance writes, make reads routable by
mongos. Optimal shard key selection is hard

73

Choosing a Shard Key

 The most common ways people choose to split
their data are via:

◼Ascending

◼Random

◼ Location-based keys

74

Ascending Shard Keys

 Ascending shard keys are generally something like a
"date" field or ObjectId—anything that steadily
increases over time

75

Randomly Distributed Shard Keys

 Randomly distributed keys could be
usernames, email addresses, UUIDs, MD5
hashes, or any other key that has no
identifiable pattern in your dataset

 As writes are randomly distributed, the shards
should grow at roughly the same rate, limiting
the number of migrates that need to occur.

76

Hashed Shard Key

 A hashed shard key can make any field randomly
distributed, so it is a good choice

 The trade-off is that you can never do a targeted
range query with a hashed shard key. If you will not
be doing range queries, though, hashed shard keys
are a good option.

77

Hashed Shard Key

 To create a hashed shard key, first create a hashed index:

 > db.users.createIndex({"username" : "hashed"})

 Next, shard the collection with:

 > sh.shardCollection("app.users", {"username" :
"hashed"})

78

Location-Based Shard Keys

 A location-based key is a key where
documents with some similarity fall into a
range based on this field.

 This can be handy for both putting data close
to its users and keeping related data together
on disk

79

Sharding setupexample

Primary Data Center Secondary Data Center

Shard 1
Priority 1

Shard 1
Priority 1

Shard 1
Priority 0

Shard 2
Priority 1

Shard 2
Priority 1

Shard 2
Priority 0

Shard 3
Priority 1

Shard 3
Priority 1

Shard 3
Priority 0

Config 1 Config 2 Config 3

THANKS YOU

	Slide 1: NOSQL
	Slide 2: Overview
	Slide 3: Relational databases
	Slide 4: SQL Databases
	Slide 5: Relational databases
	Slide 6: Relational databases
	Slide 7: Dealing with Big Data and Scalability
	Slide 8: No SQL
	Slide 9: NoSQL Definition
	Slide 10: NoSQL History
	Slide 11: Characteristics of NoSQL databases
	Slide 12: NoSQL is getting more & more popular
	Slide 13: NoSQL Data Models
	Slide 14: Key-value data
	Slide 15: Key/Value stores
	Slide 16: Use cases of key-value databases
	Slide 17: NoSQL Data Models
	Slide 18: Column wide
	Slide 19: Column Wide
	Slide 20: Cassandra Column wide
	Slide 21: Data on Cluster
	Slide 22: Cassandra Column wide
	Slide 23: Cassandra Column wide
	Slide 24: NoSQL Data Models
	Slide 25: Graph Databases
	Slide 26: Graph Databases
	Slide 27: Graph Databases
	Slide 28: Graph databases
	Slide 29: NoSQL Data Models
	Slide 30: Document Databases (Document Store)
	Slide 31: Document Data
	Slide 32: JSON document
	Slide 33: Document Features
	Slide 34: CAP Theorem: Two out of Three
	Slide 35: Performance
	Slide 36: MongoDB
	Slide 37: MONGODB
	Slide 38: Terminology
	Slide 39: Document Database
	Slide 40: MongoDB Document
	Slide 41: The _id Field
	Slide 42: Data Types
	Slide 43: Data Types
	Slide 44: Data Types
	Slide 45: The advantages of using documents
	Slide 46: Inserting Documents
	Slide 47: InsertMany
	Slide 48: Removing Documents
	Slide 49: Updating Documents
	Slide 50: Update Operators
	Slide 51: Update Operators
	Slide 52: MONGODB
	Slide 53: Introduction to find
	Slide 54: Query Criteria
	Slide 55: OR query
	Slide 56: $not
	Slide 57: Querying Arrays
	Slide 58: Querying on Embedded Documents
	Slide 59: aggregate() Method
	Slide 60: Example
	Slide 61: Accumulators
	Slide 62: MONGODB
	Slide 63: Sharding
	Slide 64: When to Shard
	Slide 65: MongoDB Sharding
	Slide 66: MongoDB Sharding
	Slide 67: Sharding on a Single-Machine Cluster
	Slide 68: Connect to Mongos
	Slide 69: Sharding on a Single-Machine Cluster
	Slide 70: Enable Sharding
	Slide 71: Sharding Collection
	Slide 72: Sharding key
	Slide 73: Choosing a Shard Key
	Slide 74: Ascending Shard Keys
	Slide 75: Randomly Distributed Shard Keys
	Slide 76: Hashed Shard Key
	Slide 77: Hashed Shard Key
	Slide 78: Location-Based Shard Keys
	Slide 79: Sharding setup example
	Slide 80: Thanks you

