BIG DATA – DATA ANALYSIS

Lê Hồng Hải UET-VNUH

Big Data

The definition of big data is data that contains greater variety, arriving in increasing volumes and with more velocity. This is also known as the 3 Vs

Big Data

7 V'S OF BIG DATA

:

.

- -

4

Big data architecture components

- **Data sources** relational databases, files (e.g., web server log files) produced by applications, real-time data produced by IoT devices.
- **Big data storage** –storing high data volumes of different types before filtering, aggregating, and preparing data for analysis.
- **Real-time message ingestion store** to capture and store real-time messages for stream processing.
- Analytical data store relational databases for preparing and structuring big data for further analytical querying.
- Big data analytics and reporting, which may include OLAP cubes, ML tools, BI tools, etc. – to provide big data insights to end users.

Big data architecture

Big Data Storage

- 1. Distributed file systems
- 2. Sharding across multiple databases
- 3. Key-value storage systems
- 4. Parallel and distributed databases

A distributed file system stores data across a large collection of machines, but provides a single file-system view

- Provides redundant storage of massive amounts of data on cheap and unreliable computers
 - Google File System (GFS)
 - Hadoop File System (HDFS)

Hadoop File System Architecture

- Single Namespace for entire cluster
- Files are broken up into blocks
 - Typically 64 MB block size
 - Each block replicated on multiple DataNodes
- Client
 - Finds the location of blocks from NameNode
 - Accesses data directly from DataNode

Hadoop Distributed File System (HDFS)

- Data Coherency
 - Write-once-read-many access model
 - Client can only append to existing files
- Distributed file systems good for millions of large files

Big Data Storage

- 1. Distributed file systems
- 2. Sharding across multiple databases
- 3. Key-value storage systems
- 4. Parallel and distributed databases

Sharding: partition data across multiple databases

 Partitioning usually done on some *partitioning attributes* (also known as *partitioning keys* or *shard keys* e.g. user ID

E.g., records with key values from 1 to 100,000 on database 1, records with key values from 100,001 to 200,000 on database 2, etc

- Key-value storage systems store large numbers (billions or even more) of small (KB-MB) sized records
- Records are partitioned across multiple machines and
- Queries are routed by the system to appropriate machine
- Records are also replicated across multiple machines, to ensure availability even if a machine fails
 - Key-value stores ensure that updates are applied to all replicas, to ensure that their values are consistent

Key-value stores may store

uninterpreted bytes, with an associated key

E.g., Amazon S3, Amazon Dynamo

- Wide-table (can have arbitrarily many attribute names) with associated key
 - Google BigTable, Apache Cassandra, Apache Hbase, Amazon DynamoDB
- JSON

MongoDB, CouchDB (document model)

Document stores store semi-structured data, typically JSON

Some key-value stores support multiple versions of data, with timestamps/version numbers

```
An example of a JSON object is:
   {
     "ID": "22222",
     "name": {
          "firstname: "Albert",
          "lastname: "Einstein"
     },
     "deptname": "Physics",
     "children": [
          { "firstname": "Hans", "lastname":
    "Einstein" },
          { "firstname": "Eduard", "lastname":
    "Einstein" }
```

Key-value stores support

- **put**(key, value): used to store values with an associated key,
- get(key): which retrieves the stored value associated with the specified key
- delete(key) -- Remove the key and its associated value
- Some systems also support range queries on key values
- Document stores also support queries on non-key attributes
 - See book for MongoDB queries
 - Also called NoSQL systems

Replication and Consistency

- Availability (system can run even if parts have failed) is essential for parallel/distributed databases
 - Via replication, so even if a node has failed, another copy is available
- Consistency is important for replicated data
 - All live replicas have same value, and each read sees latest version
- Network partitions (network can break into two or more parts, each with active systems that can't talk to other parts)
- In presence of partitions, cannot guarantee both availability and consistency
 - Brewer's CAP "Theorem"

Big data architecture

- Map-Reduce
- Spark
- Streaming

- .-.

 Platform for reliable, scalable parallel computing
 Abstracts issues of distributed and parallel environment from programmer

- Programmer provides core logic (via map() and reduce() functions)
- System takes care of parallelization of computation, coordination, etc

MapReduce - Dataflow

Paradigm dates back many decades

But very large scale implementations running on clusters with 10^3 to 10^4 machines are more recent

Google Map Reduce, Hadoop, ..

Data storage/access typically done using distributed file systems or key-value stores Input: a set of key/value pairs
User supplies two functions:

map(k,v) → list(k1,v1)
reduce(k1, list(v1)) → v2

(k1,v1) is an intermediate key/value pair
Output is the set of (k1,v2) pairs

Flow of keys and values in a map reduce task

https://www.geeksforgeeks.org/how-to-execute-wordcount-programin-mapreduce-using-cloudera-distribution-hadoop-cdh/ Example

Parallel Processing of MapReduce Job

.

.

- Map Reduce widely used for parallel processing
 - Google, Yahoo, and 100's of other companies
 - Example uses: compute PageRank, build keyword indices, do data analysis of web click logs,
- Many real-world uses of MapReduce cannot be expressed in SQL
- But many computations are much easier to express in SQL

Map Reduce vs. Databases (Cont.)

- Relational operations (select, project, join, aggregation, etc.) can be expressed using Map Reduce
- SQL queries can be translated into Map Reduce infrastructure for execution
 - Apache Hive SQL, Apache Pig Latin, Microsoft SCOPE

- Long pipelines sharing data
- Interactive applications
- Streaming applications

DFS >Map >LocalFS >Network >Reduce >DFS >Map >...

(MapReduce would need to write and read from disk a lot)

- The key idea of Spark is **R**esilient **D**istributed **D**atasets (RDD)
- It supports in-memory processing computation

Resilient Distributed Dataset (RDD) abstraction

- Collection of records that can be stored across multiple machines
- Read-only partitioned collection of records (like a DFS) but with a record of how the dataset was created as a combination of transformations from other dataset(s)

Word Count in Spark

}

```
import java.util.Arrays;
import java.util.List;
import scala.Tuple2;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.sql.SparkSession;
public class WordCount {
```

public static void main(String[] args) throws Exception {

```
if (args.length < 1) {
    System.err.println("Usage: WordCount <file-or-directory-name>");
    System.exit(1);
}
SparkSession spark =
    SparkSession.builder().appName("WordCount").getOrCreate();
```

```
JavaRDD<String> lines = spark.read().textFile(args[0]).javaRDD();
JavaRDD<String> words = lines.flatMap(s -> Arrays.asList(s.split(" ")).iterator());
JavaPairRDD<String, Integer> ones = words.mapToPair(s -> new Tuple2<>(s, 1));
JavaPairRDD<String, Integer> counts = ones.reduceByKey((i1, i2) -> i1 + i2);
```

```
counts.saveAsTextFile("outputDir"); // Save output files in this directory
```

```
List<Tuple2<String, Integer>> output = counts.collect();
for (Tuple2<String,Integer> tuple : output) {
    System.out.println(tuple);
}
spark.stop();
```

- RDDs in Spark can be typed in programs, but not dynamically
- The DataSet type allows types to be specified dynamically
- Row is a row type, with attribute names
 - In code below, attribute names/types of instructor and department are inferred from files read

Spark DataFrames and DataSet

- Operations filter, join, groupBy, agg, etc defined on DataSet, and can execute in parallel
- Dataset<Row> instructor =
 spark.read().parquet("...");
 Dataset<Row> department =
 spark.read().parquet("...");
 instructor.filter(instructor.col("salary").gt(100000
))
 - .join(department, instructor.col("dept name")
 .equalTo(department.col("dept name")))
 .groupBy(department.col("building"))
 - .agg(count(instructor.col("ID")));

Streaming Data

Streaming data refers to data that arrives in a continuous fashion

Applications include:

- Stock market: stream of trades
- Sensors: sensor readings
 - Internet of things
- Network monitoring data
- Social media: tweets and posts can be viewed as a stream
- Queries on streams can be very useful
 - Monitoring, alerts, automated triggering of actions

Publish-subscribe (pub-sub) systems provide a convenient abstraction for processing streams

- Tuples in a stream are published to a topic
- Consumers subscribe to topic

Apache Kafka

- Apache Kafka is a popular parallel pub-sub system widely used to manage streaming data
- Parallel pub-sub systems allow tuples in a topic to be partitioned across multiple machines

Big data architecture

- 1. Overview
- 2. Data Warehousing (DW)
- 3. Online Analytical Processing (OLAP)
- 4. Data Mining

Data analytics: the processing of data to infer patterns, correlations, or models for prediction

Primarily used to make business decisions

- E.g., what product to suggest for purchase
- E.g., what products to manufacture/stock, in what quantity
- Critical for businesses today

- Gather data from multiple sources into one location
- Data warehouses also integrate data into a common schema
- Data often needs to be extracted from source formats, transformed into common schema, and loaded into the data warehouse (ETL)

Generate aggregates and reports summarizing data

- Dashboards showing graphical charts/reports
- Online analytical processing (OLAP) systems allow interactive querying
- Statistical analysis using tools such as R/SAS/SPSS
- Build predictive models and use the models for decision making

Overview (Cont.)

Predictive models are widely used today

- E.g., use customer profile features and the history of a customer to predict the likelihood of default on a loan
- E.g., use history of sales to predict future sales
- Other examples of business decisions:
 - What items to stock?
 - What insurance premium to change?
 - To whom to send advertisements?

Machine learning techniques are key to finding patterns in data and making predictions

Data mining extends techniques developed by machine-learning communities to run them on very large datasets

The term business intelligence (BI) is synonym for data analytics A data warehouse is a repository (archive) of information gathered from multiple sources, stored under a unified schema, at a single site

data source *n*

Data transformation and data cleansing

E.g., correct mistakes in addresses (misspellings, zip code errors)

- How to propagate updates
- What data to summarize

- Data in warehouses can usually be divided into
 - **Fact tables**, which are large

E.g, sales(item_id, store_id, customer_id, date, number, price)

- Dimension tables, which are relatively small
 - Store extra information about stores, items, etc.

Attributes of fact tables can be usually viewed as

Measure attributes

measure some value, and can be aggregated upon

e.g., the attributes *number* or *price* of the *sales* relation

Dimension attributes

dimensions on which measure attributes are viewed

Data Warehouse Star Schema

2

- -

More on Data Warehouse Star Schema

.

Multidimensional Data and Warehouse Schemas

More complicated schema structures Snowflake schema: multiple levels of dimension tables

Example of Snowflake Schema

Data lakes

- Some applications do not find it worthwhile to bring data to a common schema
 - Data lakes are repositories which allow data to be stored in multiple formats, without schema integration
 - Less upfront effort, but more effort during querying

Database Support for Data Warehouses

- Data in warehouses usually append-only, not updated. Can avoid concurrency control overheads
- Data warehouses often use columnoriented storage

Column-oriented storage

- Arrays are compressed, reducing storage, IO and memory costs significantly
- Queries can fetch only attributes that they care about, reducing IO and memory cost
- Data warehouses often use parallel storage and query processing infrastructure

Online Analytical Processing (OLAP)

 Interactive analysis of data, allowing data to be summarized and viewed in different ways in an online fashion (with negligible delay)

Cross Tabulation

The table below is an example of a crosstabulation (cross-tab), also referred to as a pivot-table

clothes_size **all**

		color					
		dark	pastel	white	total		
item_name	skirt	8	35	10	53		
	dress	20	10	5	35		
	shirt	14	7	28	49		
	pants	20	2	5	27		
	total	62	54	48	164		

- A data cube is a multidimensional generalization of a cross-tab
- Can have n dimensions; we show 3 below
- Cross-tabs can be used as views on a data cube

item_nar#e

- Pivoting: changing the dimensions used in a cross-tab
- Slicing: creating a cross-tab for fixed values only
- Rollup: moving from finer-granularity data to a coarser granularity
- Drill down: The opposite operation that of moving from coarser-granularity data to finergranularity data

Hierarchy on dimension attributes: lets dimensions be viewed at different levels of detail

Cross-tabs can be easily extended to deal with hierarchies

□ Can drill down or roll up on a hierarchy
 □ E.g. hierarchy: *item_name* → *category*

clothes_size:

all

category	item_name		color			
		dark	pastel	white	total	
womenswear	skirt	8	8	10	53	
	dress	20	20	5	35	
	subtotal	28	28	15		88
menswear	pants	14	14	28	49	
	shirt	20	20	5	27	
	subtotal	34	34	33		76
total		62	62	48		164

Reporting tools help create formatted reports with tabular/graphical representation of data

- Data visualization tools help create interactive visualization of data
 - E.g., PowerBI, Tableau, FusionChart, plotly, Datawrapper, Google Charts, etc.

Acme Supply Company, Inc. Quarterly Sales Report

Period: Jan. 1 to March 31, 2009

Region	Category	Sales	Subtotal
North	Computer Hardware	1,000,000	
	Computer Software	500,000	
	All categories		1,500,000
South	Computer Hardware	200,000	
	Computer Software	400,000	
	All categories		600,000

Total Sales 2,100,000

.

Data Mining

- Data mining is the process of semiautomatically analyzing large databases to find useful patterns
- Some types of knowledge can be represented as rules
- More generally, knowledge is discovered by applying machine learning techniques to past instances of data to form a model

Prediction based on past history

- Predict if a credit card applicant poses a good credit risk, based on some attributes (income, job type, age, ..) and past history
- Some examples of prediction mechanisms:
 Classification
 - Items (with associated attributes) belong to one of several classes
 - Training instances have attribute values and classes provided

Regression formulae

Given a set of mappings for an unknown function, predict the function result for a new parameter value

