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RENDERING PIPELINE OVERVIEW
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Rendering Pipeline

▪ Vertex processing: operations (e.g. transformation) on every vertex.

▪ Rasterization: converts polygon into a set of fragments (set of data 
for updating a pixel in the color buffer)

▪ Fragment processing: determines color of fragments. 
▪ Fragment: data for updating color of a pixel.

▪ Output merging: determines pixel color
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Rendering Pipeline (cont’)

▪ Programmable: vertex and fragment processing stages.  Vertex 
program and fragment program enable user to apply any 
transform to the vertex, determine the fragment color through 
any way you want.

▪ Hardwired: rasterization and output merging stages but they are 
configurable through user-defined parameters.
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Spaces and Transforms for Vertex 
Processing

▪ Typical operations on a vertex
▪ Transform

▪ Lighting 

▪ Animation



BASIC MATH FOR TRANSFORMS



7

Affine Transform

▪ The world and view transforms are built upon affine 
transforms: P’ = M*P + T  

▪ Affine transform preserves:
▪ Collinearity:

▪ Parallelism

▪ Convexity

▪ Ratios of lengths of parallel line segments

▪ Varycenters of weighted collections of points

▪ Affine transform:
▪ Translation

▪ Scaling

▪ Rotation

▪ Shear mapping
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Affine Transform – Scaling 

▪ Scaling example in 2D

▪ Scaling in 3D

▪ If all of the scaling factors, sx, sy, and sz, are identical, the 
scaling is called uniform. Otherwise, it is non-uniform.

1

2

2

2

1

1

2

4

(-1,-1) (-2,-1) (-1,-1/2)

(-2,-2)

(sx, sy)=(2,1) (sx, sy)=(1,1/2) (sx, sy)=(2,2)



9

Affine Transform – Rotation

▪ 2D Rotation



10

Affine Transform – Rotation (cont’)

▪ 3D rotation about z-axis (Rz)

▪ 3D rotation about x-axis can be obtained through cyclic 
permutation: x-, y-, and z-coordinates are replaced by y-, z-, 
and x-coordinates, respectively.

▪ One more cyclic permutation leads to 3D rotation about y-axis.
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Affine Transform – Shear mapping

▪ Shear in x direction:
▪ (x,y) → (x + s.y, y)

▪ Shear mapping in 

modelling fluid dynamics
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Affine Transform – Shear mapping
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Homogeneous Coordinates

▪ How to express the combination of some Affine transform
▪ → Tough in Cartesian coordinates

▪ → Simple in Homogeneous coordinates

▪ Homogeneous coordinates
▪ A point in a n-dimention space is express by n+1 components 

▪ The homogeneous coordinates (x, y, z, w) correspond to the 3D 
Cartesian coordinates (x/w, y/w, z/w).

▪ A point presented Homogeneous coordinates by corresponds to finite 
coordinates. E.g: (1,2,3,1), (2,4,6,2) and (3,6,9,3) are different 
homogeneous coordinates for the same Cartesian coordinates (1,2,3).

▪ In CG, the w-component of the homogeneous coordinates is used to 
distinguish between vectors and points. 

▪ If w is 0, (x, y, z, w) represent a vector.

▪ Otherwise, a point.
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Affine Transform in Homogeneous 
Coordinates

▪ Translation is not linear transforms, and is represented as 
vector addition.

▪ We can describe translation as matrix multiplication if we use 
the homogeneous coordinates. 

▪ The matrices for scaling and rotation should be extended into 
4x4 matrices. E.g. scaling: 
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Rotation

▪ Look at the origin of the coordinate system such that the axis 
of rotation points toward you. If the rotation is counter-
clockwise, the rotation angle is positive. If the rotation is 
clockwise, it is negative.



16

Euler Transform

▪ When we successively rotate an object about the x-, y-, and z-axes, the object 

acquires a specific orientation.

▪ The rotations angles (x,y,z) are called the Euler angles. When three rotations 

are combined into one, it is called Euler transform.



WORD TRANSFORM
To assemble models  together
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World Transform

▪ Objects originally have no relationship 

▪ The world transform ‘assembles’ all models into a single 
coordinate system called world space. 
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World Transform Example
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Normal Transform

▪ Transformed normal is not orthogonal to the transformed triangle

▪ Transforms with (M-1)T, the normal remains orthogonal to the 
triangle.
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Normal Transform (cont’)



VIEW TRANSFORM
To convert points from the world space to the camera space
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View Transform

▪ A point is given different coordinates in distinct spaces.

▪ If all the world-space objects can be newly defined in terms of the 
camera space, it becomes much easier to develop the rendering 
algorithms. 

▪ The view transform converts each vertex from the world space to 
the camera space.
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View Transform (cont’)

▪ Goal: camera pose specification

▪ EYE: camera position

▪ AT: a reference point toward which the camera is aimed

▪ UP: view up vector that roughly describes where the top of the camera is pointing. 
(In most cases, UP is set to the y-axis of the world space.)

▪ Then, the camera space, {EYE, u, v, n}, can be created.
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Dot Product

▪ Given vectors, a and b, whose coordinates are (a1, a2, .. , an) and (b1,
b2, .. , bn), respectively, the dot product ab is defined to be a1b1+a2b2+ .. 
+anbn.

▪ ab = ‖a‖‖b‖cosθ, where ‖a‖ and ‖b‖ denote the lengths of a and b, 
respectively, and θ is the angle between a and b. 
▪ a and b are perpendicular → ab = 0.

▪ θ is acute angle → ab > 0.

▪ θ is obtuse → ab < 0.

▪ If a is a unit vector, aa = 1. 
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(1,0)(-1,1) = -1
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Orthonormal Basis

▪ Orthonormal basis = an orthogonal set of unit vectors

▪ The camera space has an orthonormal basis {u, v, n}.

▪ Note that uu=vv=nn=1 and uv=vn=nu=0.

orthonormal

standard
non-orthonormal

non-standard

orthonormal

non-standard
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2D Analogy for View Transform

▪ The coordinates of p are (1,1) in the world space but (-2,0) in the camera space.  

▪ Let’s superimpose the camera space to the world space while imagining invisible 
rods connecting p and the camera space such that the transform is applied to p.

▪ As the camera space becomes identical to the world space, the world-space 
coordinates of p" can be taken as the camera-space coordinates.  

translation by (-2,-2) rotation by -45º
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2D Analogy for View Transform (cont’) 

▪ Let’s see if the combination of T and R correctly transforms p. 

▪ How to compute R? It is obtained using the camera-space basis 
vectors. 
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2D Analogy for View Transform 
(cont’) 

▪ R transforms u into e1 and v into e2.

▪ R converts the coordinates defined in terms of the basis {e1, e2}, 
e.g., (-1,-1), into those defined in terms of the basis {u, v}, e.g., (-

2,0). In other words, R performs the basis change from {e1, e2} 
to {u, v}. 

▪ The problem of space change is decomposed into translation 
and basis change.
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View Transform (cont’)

▪ Let us do the same thing in 3D. First of all, EYE is translated to 
the origin of the world space. Imagine invisible rods 
connecting the scene objects and the camera space. The 
translation is applied to the scene objects.
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View Transform (cont’)

▪ The world space and the camera space now share the origin, 
due to translation.

▪ We then need a rotation that transforms u, v, and n into e1, e2,
and e3, respectively, i.e., Ru=e1, Rv=e2, and Rn=e3. R performs 
the basis change from {e1, e2, e3} to {u, v, n}. 
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View Transform (cont’)

▪ The view matrix

▪ OpenGL view matrix

void gluLookAt(

GLdouble Eye_x, GLdouble Eye_y, GLdouble Eye_z,

GLdouble At_x, GLdouble At_y, GLdouble At_z,

GLdouble Up_x, GLdouble Up_y, GLdouble Up_z

);
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Per-vertex Lighting

▪ Light emitted from a light source is reflected by the object surface 
and then reaches the camera.

▪ The above figure describes what kinds of parameters are needed for 
computing lighting at vertex p. It is called per-vertex lighting and is 
done by the vertex program. 

▪ Per-vertex lighting is old-fashioned. More popular is per-fragment 
lighting. It is performed by the fragment program and produces a 
better result. 

▪ Understand that a vertex color can be computed at the vertex 
processing stage



PROJECT TRANSFORM
To simulate how the real cameras capture the scene
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View Frustum

▪ Let us denote the basis of the camera space by {x, y, z} instead of {u, v, n}.

▪ Recall that, for constructing the view transform, we defined the external 
parameters of the camera, i.e., EYE, AT, and UP. Now let us control the 
camera's internals. It is analogous to choosing a lens for the camera and 
controlling zoom-in/zoom-out.

▪ The view frustum parameters, fovy, aspect, n, and f, define a truncated 
pyramid.

▪ The near and far planes run counter to the real-world camera or human 
vision system, but have been introduced for the sake of computational 
efficiency.
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View Frustum (cont’)

▪ View-frustum culling

▪ A large enough box or sphere bounding a polygon mesh is computed at the 
preprocessing step, and then at run time a CPU program tests if the bounding 
volume is outside the view frustum. If it is, the polygon mesh is discarded and 
does not enter the rendering pipeline. 

▪ It can save a fair amount of GPU computing cost with a little CPU overhead.

▪ The cylinder and sphere would be discarded by the view-frustum culling 
whereas the teapot would survive.

▪ If a polygon intersects the boundary of the view frustum, it is clipped with 
respect to the boundary, and only the portion inside the view frustum is 
processed for display.
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Projection Transform

▪ It is not easy to clip the polygons with respect to the view 
frustum. 

▪ If there is a transform that converts the view frustum to the 
axis-aligned box, and the transform is applied to the polygons 
of the scene, clipping the transformed polygons with respect to 
the box is much easier.
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Projection Transform (cont’)

▪ Consider pinhole camera, which is the simplest imaging device 
with an infinitesimally small aperture. 

▪ The convergent pencil of projection lines focuses on the 
aperture. 

▪ The film corresponds to the projection plane.

film
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Projection Transform (cont’)

▪ The view frustum can be taken as a convergent pencil of projection lines. 
The lines converge on the origin, where the camera (EYE) is located. The 
origin is often called the center of projection (COP). 

▪ All 3D points on a projection line are mapped onto a single 2D point in the 
projected image. It brings  the effect of perspective projection, where 
objects farther away look smaller.

▪ The projection transform ensures that the projection lines become parallel, 
i.e., we have a universal projection line. Now viewing is done along the 
universal projection line. It is called the orthographic projection. The 
projection transform brings the effect of perspective projection “within a 
3D space.”
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Projection Transform (cont’)

▪ Projection transform matrix

▪ The projection-transformed objects will enter the rasterization stage.  

▪ Unlike the vertex processing stage, the rasterization stage is implemented 
in hardware, and assumes that the clip space is left-handed. In order for the 
vertex processing stage to be compatible with the hard-wired rasterization 
stage, the objects should be z-negated. 
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Projection Transform (cont’)

▪ Projection transform from the camera space (RHS) to the clip 
space (LHS)

▪ D3DXMatrixPerspectiveFovRH builds the projection transform 
matrix.

D3DXMATRIX *WINAPI D3DXMatrixPerspectiveFovRH(

D3DXMATRIX *pOut,

FLOAT fovy,              // in radians

FLOAT Aspect,          // width divided by height

FLOAT zn,

FLOAT zf ); 
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Projection Transform (cont’)

▪ OpenGL function for projection matrix

▪ In OpenGL, the clip-space cuboid has a different dimension, 
and consequently the projection transform is different. See the 
book.

void gluPerspective(

GLdouble fovy,

GLdouble aspect,

GLdouble n,

GLdouble f

);
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Deriving Projection Transform

▪ Based on the fact that projection-transformed y coordinate (y´) is in the 
range of [-1,1], we can compute the general representation of y´.

▪ As shown above, we could compute x´ in a similar way if fovx were given.
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Deriving Projection Transform (cont’)

▪ Unfortunately fovx is not given, and therefore let’s define x´ in 
terms of fovy and aspect.
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Deriving Projection Transform (cont’)

▪ We have found x´ and y´.

▪ Homogeneous coordinates representation

▪ Then, we have the following projection matrix. Note that z´ and 
z´´ are independent of x and y, and therefore m1 and m2 are 0s. 

D

D

just 0

A
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Deriving Projection Transform (cont’)

▪ Let’s apply the projection matrix.

▪ In projection transform, observe that –f and -n are transformed to -1 and 0, 
respectively.

▪ Using the fact, the projection matrix can be completed. 

2-46
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