
VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF HANOI

COMPUTER GRAPHICS

ĐO TẠO NGHIÊN ỨU SÁNG TO

Lecturer: Dr. NGUYEN Hoang Ha

Lecture 4: Rendering pipeline – Vertex processing

Reference: JungHyun Han. 2011. 3D Graphics for Game Programming (1st ed.), chapter 2

RENDERING PIPELINE OVERVIEW

3

Rendering Pipeline

▪ Vertex processing: operations (e.g. transformation) on every vertex.

▪ Rasterization: converts polygon into a set of fragments (set of data
for updating a pixel in the color buffer)

▪ Fragment processing: determines color of fragments.
▪ Fragment: data for updating color of a pixel.

▪ Output merging: determines pixel color

4

Rendering Pipeline (cont’)

▪ Programmable: vertex and fragment processing stages. Vertex
program and fragment program enable user to apply any
transform to the vertex, determine the fragment color through
any way you want.

▪ Hardwired: rasterization and output merging stages but they are
configurable through user-defined parameters.

5

Spaces and Transforms for Vertex
Processing

▪ Typical operations on a vertex
▪ Transform

▪ Lighting

▪ Animation

BASIC MATH FOR TRANSFORMS

7

Affine Transform

▪ The world and view transforms are built upon affine
transforms: P’ = M*P + T

▪ Affine transform preserves:
▪ Collinearity:

▪ Parallelism

▪ Convexity

▪ Ratios of lengths of parallel line segments

▪ Varycenters of weighted collections of points

▪ Affine transform:
▪ Translation

▪ Scaling

▪ Rotation

▪ Shear mapping

8

Affine Transform – Scaling

▪ Scaling example in 2D

▪ Scaling in 3D

▪ If all of the scaling factors, sx, sy, and sz, are identical, the
scaling is called uniform. Otherwise, it is non-uniform.

1

2

2

2

1

1

2

4

(-1,-1) (-2,-1) (-1,-1/2)

(-2,-2)

(sx, sy)=(2,1) (sx, sy)=(1,1/2) (sx, sy)=(2,2)

9

Affine Transform – Rotation

▪ 2D Rotation

10

Affine Transform – Rotation (cont’)

▪ 3D rotation about z-axis (Rz)

▪ 3D rotation about x-axis can be obtained through cyclic
permutation: x-, y-, and z-coordinates are replaced by y-, z-,
and x-coordinates, respectively.

▪ One more cyclic permutation leads to 3D rotation about y-axis.

11

Affine Transform – Shear mapping

▪ Shear in x direction:
▪ (x,y) → (x + s.y, y)

▪ Shear mapping in

modelling fluid dynamics

12

Affine Transform – Shear mapping

13

Homogeneous Coordinates

▪ How to express the combination of some Affine transform
▪ → Tough in Cartesian coordinates

▪ → Simple in Homogeneous coordinates

▪ Homogeneous coordinates
▪ A point in a n-dimention space is express by n+1 components

▪ The homogeneous coordinates (x, y, z, w) correspond to the 3D
Cartesian coordinates (x/w, y/w, z/w).

▪ A point presented Homogeneous coordinates by corresponds to finite
coordinates. E.g: (1,2,3,1), (2,4,6,2) and (3,6,9,3) are different
homogeneous coordinates for the same Cartesian coordinates (1,2,3).

▪ In CG, the w-component of the homogeneous coordinates is used to
distinguish between vectors and points.

▪ If w is 0, (x, y, z, w) represent a vector.

▪ Otherwise, a point.

14

Affine Transform in Homogeneous
Coordinates

▪ Translation is not linear transforms, and is represented as
vector addition.

▪ We can describe translation as matrix multiplication if we use
the homogeneous coordinates.

▪ The matrices for scaling and rotation should be extended into
4x4 matrices. E.g. scaling:

15

Rotation

▪ Look at the origin of the coordinate system such that the axis
of rotation points toward you. If the rotation is counter-
clockwise, the rotation angle is positive. If the rotation is
clockwise, it is negative.

16

Euler Transform

▪ When we successively rotate an object about the x-, y-, and z-axes, the object

acquires a specific orientation.

▪ The rotations angles (x,y,z) are called the Euler angles. When three rotations

are combined into one, it is called Euler transform.

WORD TRANSFORM
To assemble models together

18

World Transform

▪ Objects originally have no relationship

▪ The world transform ‘assembles’ all models into a single
coordinate system called world space.

19

World Transform Example

20

Normal Transform

▪ Transformed normal is not orthogonal to the transformed triangle

▪ Transforms with (M-1)T, the normal remains orthogonal to the
triangle.

21

Normal Transform (cont’)

VIEW TRANSFORM
To convert points from the world space to the camera space

23

View Transform

▪ A point is given different coordinates in distinct spaces.

▪ If all the world-space objects can be newly defined in terms of the
camera space, it becomes much easier to develop the rendering
algorithms.

▪ The view transform converts each vertex from the world space to
the camera space.

24

View Transform (cont’)

▪ Goal: camera pose specification

▪ EYE: camera position

▪ AT: a reference point toward which the camera is aimed

▪ UP: view up vector that roughly describes where the top of the camera is pointing.
(In most cases, UP is set to the y-axis of the world space.)

▪ Then, the camera space, {EYE, u, v, n}, can be created.

25

Dot Product

▪ Given vectors, a and b, whose coordinates are (a1, a2, .. , an) and (b1,
b2, .. , bn), respectively, the dot product ab is defined to be a1b1+a2b2+ ..
+anbn.

▪ ab = ‖a‖‖b‖cosθ, where ‖a‖ and ‖b‖ denote the lengths of a and b,
respectively, and θ is the angle between a and b.
▪ a and b are perpendicular → ab = 0.

▪ θ is acute angle → ab > 0.

▪ θ is obtuse → ab < 0.

▪ If a is a unit vector, aa = 1.

x

y

(1,0)

(0,1)

(1,0)(0,1) = 0

x

y

(1,0)

(1,1)

(1,0)(1,1) = 1

x

y

(1,0)

(-1,1)

(1,0)(-1,1) = -1

26

Orthonormal Basis

▪ Orthonormal basis = an orthogonal set of unit vectors

▪ The camera space has an orthonormal basis {u, v, n}.

▪ Note that uu=vv=nn=1 and uv=vn=nu=0.

orthonormal

standard
non-orthonormal

non-standard

orthonormal

non-standard

27

2D Analogy for View Transform

▪ The coordinates of p are (1,1) in the world space but (-2,0) in the camera space.

▪ Let’s superimpose the camera space to the world space while imagining invisible
rods connecting p and the camera space such that the transform is applied to p.

▪ As the camera space becomes identical to the world space, the world-space
coordinates of p" can be taken as the camera-space coordinates.

translation by (-2,-2) rotation by -45º

28

2D Analogy for View Transform (cont’)

▪ Let’s see if the combination of T and R correctly transforms p.

▪ How to compute R? It is obtained using the camera-space basis
vectors.

29

2D Analogy for View Transform
(cont’)

▪ R transforms u into e1 and v into e2.

▪ R converts the coordinates defined in terms of the basis {e1, e2},
e.g., (-1,-1), into those defined in terms of the basis {u, v}, e.g., (-

2,0). In other words, R performs the basis change from {e1, e2}
to {u, v}.

▪ The problem of space change is decomposed into translation
and basis change.

30

View Transform (cont’)

▪ Let us do the same thing in 3D. First of all, EYE is translated to
the origin of the world space. Imagine invisible rods
connecting the scene objects and the camera space. The
translation is applied to the scene objects.

31

View Transform (cont’)

▪ The world space and the camera space now share the origin,
due to translation.

▪ We then need a rotation that transforms u, v, and n into e1, e2,
and e3, respectively, i.e., Ru=e1, Rv=e2, and Rn=e3. R performs
the basis change from {e1, e2, e3} to {u, v, n}.

32

View Transform (cont’)

▪ The view matrix

▪ OpenGL view matrix

void gluLookAt(

GLdouble Eye_x, GLdouble Eye_y, GLdouble Eye_z,

GLdouble At_x, GLdouble At_y, GLdouble At_z,

GLdouble Up_x, GLdouble Up_y, GLdouble Up_z

);

33

Per-vertex Lighting

▪ Light emitted from a light source is reflected by the object surface
and then reaches the camera.

▪ The above figure describes what kinds of parameters are needed for
computing lighting at vertex p. It is called per-vertex lighting and is
done by the vertex program.

▪ Per-vertex lighting is old-fashioned. More popular is per-fragment
lighting. It is performed by the fragment program and produces a
better result.

▪ Understand that a vertex color can be computed at the vertex
processing stage

PROJECT TRANSFORM
To simulate how the real cameras capture the scene

35

View Frustum

▪ Let us denote the basis of the camera space by {x, y, z} instead of {u, v, n}.

▪ Recall that, for constructing the view transform, we defined the external
parameters of the camera, i.e., EYE, AT, and UP. Now let us control the
camera's internals. It is analogous to choosing a lens for the camera and
controlling zoom-in/zoom-out.

▪ The view frustum parameters, fovy, aspect, n, and f, define a truncated
pyramid.

▪ The near and far planes run counter to the real-world camera or human
vision system, but have been introduced for the sake of computational
efficiency.

36

View Frustum (cont’)

▪ View-frustum culling

▪ A large enough box or sphere bounding a polygon mesh is computed at the
preprocessing step, and then at run time a CPU program tests if the bounding
volume is outside the view frustum. If it is, the polygon mesh is discarded and
does not enter the rendering pipeline.

▪ It can save a fair amount of GPU computing cost with a little CPU overhead.

▪ The cylinder and sphere would be discarded by the view-frustum culling
whereas the teapot would survive.

▪ If a polygon intersects the boundary of the view frustum, it is clipped with
respect to the boundary, and only the portion inside the view frustum is
processed for display.

37

Projection Transform

▪ It is not easy to clip the polygons with respect to the view
frustum.

▪ If there is a transform that converts the view frustum to the
axis-aligned box, and the transform is applied to the polygons
of the scene, clipping the transformed polygons with respect to
the box is much easier.

38

Projection Transform (cont’)

▪ Consider pinhole camera, which is the simplest imaging device
with an infinitesimally small aperture.

▪ The convergent pencil of projection lines focuses on the
aperture.

▪ The film corresponds to the projection plane.

film

39

Projection Transform (cont’)

▪ The view frustum can be taken as a convergent pencil of projection lines.
The lines converge on the origin, where the camera (EYE) is located. The
origin is often called the center of projection (COP).

▪ All 3D points on a projection line are mapped onto a single 2D point in the
projected image. It brings the effect of perspective projection, where
objects farther away look smaller.

▪ The projection transform ensures that the projection lines become parallel,
i.e., we have a universal projection line. Now viewing is done along the
universal projection line. It is called the orthographic projection. The
projection transform brings the effect of perspective projection “within a
3D space.”

40

Projection Transform (cont’)

▪ Projection transform matrix

▪ The projection-transformed objects will enter the rasterization stage.

▪ Unlike the vertex processing stage, the rasterization stage is implemented
in hardware, and assumes that the clip space is left-handed. In order for the
vertex processing stage to be compatible with the hard-wired rasterization
stage, the objects should be z-negated.

41

Projection Transform (cont’)

▪ Projection transform from the camera space (RHS) to the clip
space (LHS)

▪ D3DXMatrixPerspectiveFovRH builds the projection transform
matrix.

D3DXMATRIX *WINAPI D3DXMatrixPerspectiveFovRH(

D3DXMATRIX *pOut,

FLOAT fovy, // in radians

FLOAT Aspect, // width divided by height

FLOAT zn,

FLOAT zf);

42

Projection Transform (cont’)

▪ OpenGL function for projection matrix

▪ In OpenGL, the clip-space cuboid has a different dimension,
and consequently the projection transform is different. See the
book.

void gluPerspective(

GLdouble fovy,

GLdouble aspect,

GLdouble n,

GLdouble f

);

43

Deriving Projection Transform

▪ Based on the fact that projection-transformed y coordinate (y´) is in the
range of [-1,1], we can compute the general representation of y´.

▪ As shown above, we could compute x´ in a similar way if fovx were given.

44

Deriving Projection Transform (cont’)

▪ Unfortunately fovx is not given, and therefore let’s define x´ in
terms of fovy and aspect.

45

Deriving Projection Transform (cont’)

▪ We have found x´ and y´.

▪ Homogeneous coordinates representation

▪ Then, we have the following projection matrix. Note that z´ and
z´´ are independent of x and y, and therefore m1 and m2 are 0s.

D

D

just 0

A

46

Deriving Projection Transform (cont’)

▪ Let’s apply the projection matrix.

▪ In projection transform, observe that –f and -n are transformed to -1 and 0,
respectively.

▪ Using the fact, the projection matrix can be completed.

2-46

	Slide 1
	Slide 2: RENDERING PIPELINE OVERVIEW
	Slide 3: Rendering Pipeline
	Slide 4: Rendering Pipeline (cont’)
	Slide 5: Spaces and Transforms for Vertex Processing
	Slide 6: BASIC MATH FOR TRANSFORMS
	Slide 7: Affine Transform
	Slide 8: Affine Transform – Scaling
	Slide 9: Affine Transform – Rotation
	Slide 10: Affine Transform – Rotation (cont’)
	Slide 11: Affine Transform – Shear mapping
	Slide 12: Affine Transform – Shear mapping
	Slide 13: Homogeneous Coordinates
	Slide 14: Affine Transform in Homogeneous Coordinates
	Slide 15: Rotation
	Slide 16: Euler Transform
	Slide 17: WORD TRANSFORM
	Slide 18: World Transform
	Slide 19: World Transform Example
	Slide 20: Normal Transform
	Slide 21: Normal Transform (cont’)
	Slide 22: VIEW TRANSFORM
	Slide 23: View Transform
	Slide 24: View Transform (cont’)
	Slide 25: Dot Product
	Slide 26: Orthonormal Basis
	Slide 27: 2D Analogy for View Transform
	Slide 28: 2D Analogy for View Transform (cont’)
	Slide 29: 2D Analogy for View Transform (cont’)
	Slide 30: View Transform (cont’)
	Slide 31: View Transform (cont’)
	Slide 32: View Transform (cont’)
	Slide 33: Per-vertex Lighting
	Slide 34: PROJECT TRANSFORM
	Slide 35: View Frustum
	Slide 36: View Frustum (cont’)
	Slide 37: Projection Transform
	Slide 38: Projection Transform (cont’)
	Slide 39: Projection Transform (cont’)
	Slide 40: Projection Transform (cont’)
	Slide 41: Projection Transform (cont’)
	Slide 42: Projection Transform (cont’)
	Slide 43: Deriving Projection Transform
	Slide 44: Deriving Projection Transform (cont’)
	Slide 45: Deriving Projection Transform (cont’)
	Slide 46: Deriving Projection Transform (cont’)

