
VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF HANOI

COMPUTER GRAPHICS

ĐO TẠO NGHIÊN ỨU SÁNG TO

Lecturer: Dr. NGUYEN Hoang Ha

Lecture 5: Rasterization, Fragment Processing,
and Output Merging

Reference:JungHyun Han. 2011. 3D Graphics for Game Programming (1st ed.), Chapman & Hall/CRC.Chapter 3,4

RASTERIZATION
To build fragment data from given vertices

3

Rasterization Stage

§ The vertices processed by the vertex program enter a hard-wired stage
and are assembled to build primitives (polygons, lines). Primitives are
further processed to determine its 2D form on the screen, and are
rasterized into a set of fragments.

§ The hard-wired rasterization stage performs the following:
§ Clipping
§ Perspective division
§ Back-face culling
§ Viewport transform
§ Scan conversion (rasterization in a narrow sense)

4

Clipping

§ Clipping is performed in the clip space, but the following figure presents
its concept in the camera space, for the sake of intuitive understanding.
§ ‘Completely outside’ triangles are discarded.
§ ‘Completely inside’ triangles are accepted.
§ ‘Intersecting’ triangles are clipped.

§ As a result of clipping, vertices may be added to and deleted from the
triangle.

5

Perspective Division

§ Unlike affine transforms, the last row of Mproj is not (0 0 0 1) but (0 0
-1 0). When Mproj is applied to (x,y,z,1), the w-coordinate of the
transformed vertex is –z.

§ In order to convert from the homogeneous (clip) space to the
Cartesian space, each vertex should be divided by its w-coordinate
(which equals –z).

6

Perspective Division (cont’)

§ Note that –z is a positive value representing the distance from the xy-
plane of the camera space. Division by –z makes distant objects
smaller. It is perspective division.

7

Perspective Correction

8

Back-face Culling

§ The polygons facing away from the viewpoint of the camera are discarded.
Such polygons are called back-faces. (The polygons facing the camera are
called front-faces.)

§ In the camera space, the normal of a triangle can be used to determine
whether the triangle is a front-face or a back-face. A triangle is taken as a
back-face if the camera (EYE) is in the opposite side of the triangle's normal.
Otherwise, it is a front-face.

§ For the purpose, compute the dot product of the triangle normal n and the
vector c connecting the camera position and a vertex of the triangle.

9

Back-face Culling (cont’)

§ Back-face culling in the camera space is expensive.
§ Fortunately, The projection transform makes all the connecting

vectors parallel to the z-axis. The universal connecting vector
represents the parallelized projection lines. Then, by viewing the
triangles along the universal connecting vector, we can
distinguish the back-faces from the front-faces.

10

Back-face Culling (cont’)

§ Viewing a triangle along the universal connecting vector is equivalent to
orthographically projecting the triangle onto the xy-plane.

§ A 2D triangle with CW-ordered vertices is a back-face, and a 2D triangle
with CCW-ordered vertices is a front-face.

§ Compute the following determinant, where the first row represents the 2D
vector connecting v1 and v2, and the second row represents the 2D vector
connecting v1 and v3. If it is positive, CCW. If negative, CW. If 0, edge-on face.

§ Note that, if the vertices are ordered CW in the clip space, the reverse holds,
i.e., the front-face has CW-ordered vertices in 2D.

11

Back-face Culling – OpenGL Example

§ OpenGL and Direct3D allow us to control the face culling
mechanism based on vertex ordering.

12

Coordinate Systems – RHS vs. LHS

§ RHS vs. LHS

§ Notice the difference between 3ds Max and OpenGL: The
vertical axis is the z-axis in 3ds Max, but is the y-axis in OpenGL.

13

Coordinate Systems – 3ds Max to
OpenGL

If the scene is
exported as is to
OpenGL, the
objects appear
flipped.

At the time of
export, flip the
yz-axes while
making the
objects
immovable.

14

Coordinate Systems – 3ds Max to OpenGL (cont’)

15

Coordinate Systems –
3ds Max to Direct3D

§ Assume that the yz-axes have been flipped. Then, ‘3ds Max to Direct3D’
problem is reduced to ‘OpenGL to Direct3D.’

§ Placing an RHS-based model into an LHS (or vice versa) has the effect of
making the model reflected by the xy-plane mirror, as shown in (a).

§ The problem can be easily resolved if we enforce one more reflection,
as shown in (b). Reflecting the reflected returns to the original!

§ Reflection with respect to the xy-plane is equivalent to negating the z-
coordinates.

16

Coordinate Systems
– 3ds Max to Direct3D (cont’)

§ Conceptual flow from 3ds Max to Direct3D

17

Coordinate Systems –
3ds Max to Direct3D (cont’)
§ Conceptual flow from 3ds Max to Direct3D

18

Coordinate Systems – 3ds Max to Direct3D (cont’)

§ Conversion from 3ds Max to Direct3D requires yz-axis flip
followed by z-negation. The combination is simply yz-swap.

19

Coordinate Systems – 3ds Max to Direct3D (cont’)

§ When only yz-swap is done, we have the following image. Instead
of back-faces, front-faces are culled.

§ The yz-swap does not change the CCW order of vertices, and
therefore the front-faces have CCW-ordered vertices in 2D. In
Direct3D, the vertices of a back-face are assumed to appear
CCW-ordered in 2D, and the default is to cull the faces with the
CCW-ordered vertices.

§ The solution is to change the Direct3D culling mode such that the
faces with CW-ordered vertices are culled.

20

Viewport

§ A window at the computer screen is associated with its own
screen space. It is a 3D space and right-handed.

§ A viewport is defined in the screen space.

typedef struct _D3DVIEWPORT9 {
DWORD X;
DWORD Y;
DWORD Width;
DWORD Height;
float MinZ;
float MaxZ;
} D3DVIEWPORT9;

typedef struct D3D10_VIEWPORT {
INT TopLeftX;
INT TopLeftY;
UINT Width;
UINT Height;
FLOAT MinDepth;
FLOAT MaxDepth;
} D3D10_VIEWPORT;

21

Viewport Transform

In most applications, MinZ and MaxZ are
set to 0.0 and 1.0, respectively,
and both of MinX and MinY are zero.

22

Scan Conversion

§ Defines the screen-space pixel locations covered by the
primitive and

§ Interpolates the per-vertex attributes to determine the per-
fragment attributes

23

Scan Conversion (cont’)

24

Scan Conversion (cont’)

25

Top-left Rule

§ When a pixel is on the edge shared by two triangles, we have
to decide which triangle it belongs to.

§ A triangle may have right, left, top or bottom edges.
§ A pixel belongs to a triangle if it lies on the top or left edge of

the triangle.

26

§ An object is picked by placing the mouse cursor on it or clicking it.

§ Mouse clicking simply returns the 2D pixel coordinates (xs,ys). Given
(xs,ys), we can consider a ray described by the start point (xs,ys,0) and
the direction vector (0,0,1).

§ The ray will be transformed back to the world or object space, and then
ray-object intersection test will be done. For now, let’s transform the
ray to the camera space

Object Picking

27

Object Picking (cont’)

§ Let us transform the direction vector of the camera-space ray
(CS_Direc) into the world space (WS_Direc).

§ For now, assume that the start point of the camera-space ray is the
origin. Then, the start point of the world-space ray (WS_Start) is simply
EYE.

28

Object Picking (cont’)

§ In principle, we have to perform the ray intersection test with
every triangle in the triangle list. A faster but less accurate
method is to approximate each mesh with a bounding sphere
that completely contains the mesh, and then do the ray-
sphere intersection test.

29

Object Picking (cont’)

§ Bounding volumes

§ Bounding volume creation

30

§ For the ray-sphere intersection test, let us represent the ray in a
parametric representation.

§ Collect only positive ts. (Given two positive ts for a sphere, choose the
smaller.)

Object Picking (cont’)

31

Object Picking (cont’)
§ The bounding sphere hit first by the ray is the one with the smallest t with the range constrain [n,f].

32

Object Picking (cont’d)

§ Ray-sphere intersection test is often performed at the
preprocessing step, and discards the polygon mesh that is
guaranteed not to intersect the ray.

FRAGMENT PROCESSING
To determine final color of each fragment

34

Fragment Processing

§ Per-fragment attributes: normal vector, texture coordinates, color values,
depth…

§ Fragment processing stage determines the final color of each fragment.
§ Per-fragment lighting
§ Texturing

35

Texture Coordinates

§ An image texture is a 2D array of texels (texture elements). Each
texel has a unique address, i.e., 2D array index.

§ Use normalized texture coordinates (u,v) in [0,1] à multiple
images of different resolutions can be glued to a surface
without changing the texture coordinates.

36

Surface Parameterization

§ Surface parameterization: texture coordinates are assigned
to the vertices of the polygon mesh.

§ In general, parameterization requires unfolding a 3D surface
onto a 2D planar domain.

37

Chart and Atlas

§ Surface to be textured is subdivided into patches.
§ Each patch is unfolded and parameterized. An image for a

patch is called a chart.
§ Multiple charts are usually packed and arranged in a texture,

which is often called an atlas.

38

Texture Coordinates to Texel Address

5.0)(
5.0)(

-´=
-´=

yy

xx

Svt
Sut

§ Scan conversion is done with the texture coordinates.

§ D3D performs the following computation to convert the texture
coordinates to the texel address.

5.0)(
5.0)(

-´=
-´=

yy

xx

Svt
Sut

39

Texturing Examples

§ Observe that multiple images of different resolutions can be
glued to a surface.

40

Texture Coordinates (revisited)

§ Direct3D and OpenGL adopt different parameter spaces for
texture coordinates.

§ When a textured model is exported between Direct3D and
OpenGL, the v-coordinates should be converted into (1-v).

OUTPUT MERGING
To determine the final color of each pixel from corresponding fragments

42

Z-buffering

§ The output of the fragment program is often called the RGBAZ fragment.
§ A or alpha for representing the fragment's opacity
§ Z or depth used for z-buffering

§ Using alpha and depth values, the fragment competes or is merged with the
pixel of the color buffer.

§ The z-buffer has the same resolution as the color buffer, and records the z-
values of the pixels currently stored in the color buffer.
§ When a fragment at (x,y) is passed from the fragment program, its z-value is

compared with the z-buffer value at (x,y).
§ If the fragment has a smaller z-value, its color and z-value are used to update

the color buffer and z-buffer at (x,y), respectively.
§ Otherwise, the fragment is discarded.

43

Z-buffering (cont’)
§ Assume MaxZ is 1.0, red triangle’s depth is 0.8, blue

triangle’s is 0.5.

44

Z-buffering (cont’)

§ Rendering-order independence!!

45

Ed Catmull

§ Founder of Pixar and now president of Walt Disney and Pixar Animation
Studios

§ Academy awards:
§ 1993 Academy Scientific and Technical Award "for the development of

PhotoRealistic RenderMan software which produces images used in motion
pictures from 3D computer descriptions of shape and appearance"

§ 1996 Academy Scientific and Technical Award "for pioneering inventions in
Digital Image Compositing"

§ 2001 Oscar "for significant advancements to the field of motion picture
rendering as exemplified in Pixar's RenderMan"

§ 2008 Gordon E. Sawyer Award “for an individual in the motion picture industry
whose technological contributions have brought credit to the industry“

§ Ed Catmull’s work
§ Texture mapping
§ Z-buffering
§ Bicubic patches and subdivision surfaces

46

Alpha Blending

§ The alpha channel in the range of [0,1]
§ 0 denotes “fully transparent.”
§ 1 denotes “fully opaque.”

§ A typical blending equation is described as follows:

§ For alpha blending, the primitives cannot be rendered in an arbitrary
order. They must be rendered after all opaque primitives, and in back-
to-front order. Therefore, the partially transparent objects should be
sorted.

47

Z-culling

§ Let’s kill the fragments “before the fragment processing stage” if possible.
§ A tile is composed of nxn pixels, and records the maximum among their z-

values.
§ Let’s compare it with the minimum z-coordinate of the three vertices of a

triangle.

48

Z-culling (cont’)

§ Z-culling is powerful, and is enabled by default.
§ Consider the scene, where the first object occludes almost of triangles

of the other objects.

§ In a test, the average frame rate with the front-to-back ordered objects
is 12.75 fps whereas that with the back-to-front ordered objects is 2.71.

§ This shows that the triangles may need to be sorted in front-to-back
order in order to maximize the performance increase brought by z-
culling.

49

Pre-Z Pass

§ Two-pass algorithm
§ 1st pass: The scene is rendered with no shading, e.g., no lighting and

no texturing. Then, the color buffer is not filled, but the z-buffer is
filled with the depths of the visible surfaces of the scene.

§ 2nd pass: The scene is rendered with full shading. Then, z-culling may
cull out all fragments that are occluded by the visible surfaces. No
occluded fragment enters the fragment processing stage.

§ The pre-Z pass algorithm even with back-to-front ordered
objects outperforms the single-pass front-to-back
rendering.

