
Tran Giang Son, tran-giang.son@usth.edu.vn

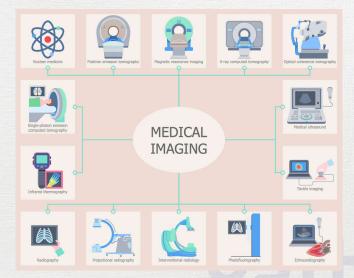
ICT Department, USTH

Overview

Introduction

- Cardiovascular diseases
 Cancers
- Diabetes

Lower respiratory


Neonatal deaths

Diaaroeal diseases

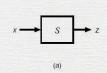
- Respiratory diseases
- Dementia
- Road injuries

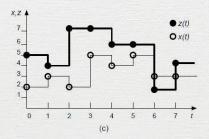
Liver disease

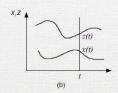
Introduction

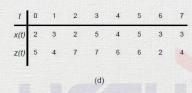
Signal

- A signal: a function of independent variables
 - Time, distance, position, temperature, pressure, etc
- Carries information
- Generated naturally
 - Can also be generated artificially
- A function of one, two, or N dimensions (1D, 2D or 3D).

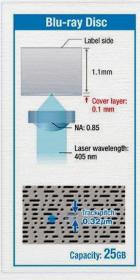


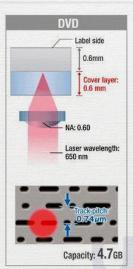

Analog and Digital signals

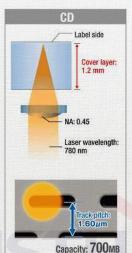

- Representing the numerical value of quantities
 - Analog: values from a continuous (infinite) set
 - Digital: values from a finite number of discrete values

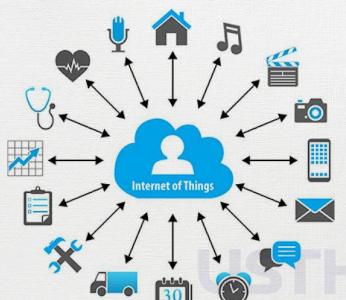


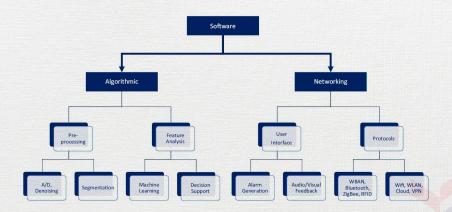
Fundamental of signals



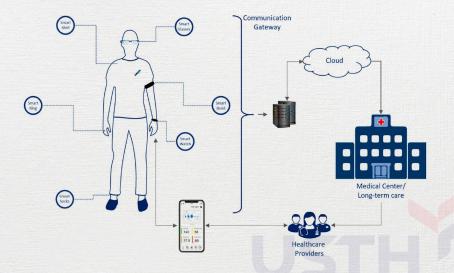





Fundamental of signals



IoMT


IoMT Software

IoMT Hardware

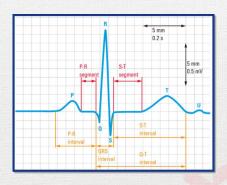
- The human body is made up of different systems
 - the nervous system,
 - the cardiovascular system,
 - the respiratory system...

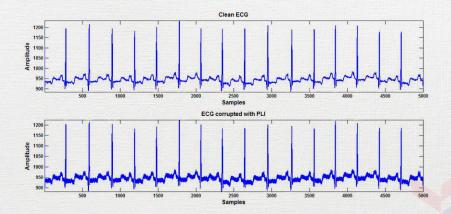
- The different physiological signals in the human body
- Cause diseases and lead to pathological processes.
- The nature of these physiological signals can be in the form of
 - physical
 - electrical
 - or biochemical signals

- Bioelectrical signals correspond to physiological and anatomical aspects of the human body
- Detection
 - Electronics sensors
 - Optical sensors
 - Mechanical sensors

placed on the surface of the body.

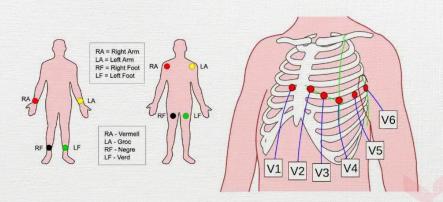
- Amplitude modulation and frequency modulation components
- 4N:
 - Nonstationarity
 - Nonlinearity
 - Non-Gaussian
 - Near-sparse
- 4V
 - Velocity
 - Variety
 - Veracity
 - Volume




Examples

From	Metrics
Heart	Electrocardiogram (ECG)
Brain	Electroencephalogram (EEG)
Muscle	Electromyogram (EMG)
Blood oxygen level	Oxygen Saturation (SpO2)

Acquisition


- Electrical recording of cardiac activity especially heart rhythms
- Normal values
 - P wave: 80 ms
 - QRS complex: 80 100 ms T wave: 160 ms
 - PR interval: 120 200 ms
 - PR segment: 50 120 ms
 - ST segment: 80 120 ms
 - RR interval: 0.6 1.2 s

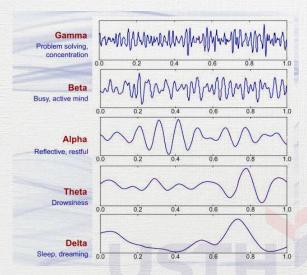
- Measuring ECG under different conditions
 - resting state ECG (comfortable position),
 - stress ECG (person is exercising),
 - ambulatory ECG (patient's ECG is recorded continuously for days or weeks).

ECGs are typically used:

- Detecting arrhythmias (heart beats faster or slower)
- Detecting myocardial infraction or heart attacks especially
 - Heart blood supply restricted
 - Cardiomyopathy
- Coronary artery disease
 - Fatty substances restricting the flow of blood in arteries.
- Seizures
- Medical monitoring when some kind of anesthesia is involved.

Electroencephalogram (EEG)

- Graphical representation of electrical activity of the brain captured from the scalp using few electrodes.
- Reflects the cortical electrical activity



Electroencephalogram (EEG)

- Detecting
 - seizures
 - brain trauma
 - brain tumor
 - head injury
 - sleep disorders
 - other neurodegenerative diseases
- The most popular EEG electrodes topography is called as 10
 - 20 EEG system

Electroencephalogram (EEG)

• Bands based on the frequency

Frequency band	Frequency	Brain states
Gamma (γ)	35 Hz	Concentration
Beta (β)	$12\text{-}35~\mathrm{Hz}$	Anxiety dominant, active, relaxed
Alpha (α)	8-12 Hz	Very relaxed, passive attention
Theta (θ)	4-8 Hz	Deeply relaxed, inward focused
Delta (δ)	$0.54~\mathrm{Hz}$	Sleep

- Applications
 - Seizure, Alzheimer's, and epilepsy detection
 - Brain activity analysis
 - Neuroentertainment such as VR
 - Sleep analysis and study
 - Cognitive training: brain aging, mindfulness, focus, etc.
 - EEG biometrics for security
 - Anxiety disorders
 - Attention deficit hyperactivity disorder study

Practice!

Practical work 1

- ECG Heartbeat Categorization
 - Download dataset from Kaggle
 - Explore dataset
 - Build ONE machine learning/deep learning model to perform classification
 - Compare results with the original paper

Practical work 1

- Write a report (in LATEX)
 - Name it « Report.1.tex »
 - Describe the dataset in detail that you have downloaded
 - Explain how you implement the model
 - Try experimenting with different hyperparameter values
- Push the report and your code (Notebook and .py script) to your forked repository

