
VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF HANOI

COMPUTER GRAPHICS

ĐO TẠO NGHIÊN ỨU SÁNG TO

Lecturer: Dr. NGUYEN Hoang Ha

Lecture 7: OpenGL

Reference: Chapter 8-9 Principles and Practice (3rd Edition), Addison-Wesley, 2014

OpenGL Overview

3

What is ?

§ A software interface to graphics hardware
§ Low level graphics rendering API for High-quality color images
§ Philosophy:

§ Operating system independent
§ Platform independent
§ Window system independent
§ Rendering only
§ Aims to be real-time
§ Takes advantage of graphics hardware where it exists
§ Client-server system
§ Standard supported by major companies

4

Early History of APIs

§ IFIPS (1973) formed two committees to come up with a
standard graphics API
§ Graphical Kernel System (GKS)

§ 2D but contained good workstation model
§ GKS adopted as IS0 and later ANSI standard (1980s)

§ GKS not easily extended to 3D (GKS-3D)
§ Far behind hardware development

5

PHIGS and X

§ Programmers Hierarchical Graphics System (PHIGS)
§ Arose from CAD community
§ Database model with retained graphics (structures)

§ X Window System
§ DEC/MIT effort
§ Client-server architecture with graphics

§ PEX combined the two
§ Not easy to use (all the defects of each)

6

SGI and GL

§ Silicon Graphics (SGI) revolutionized the graphics workstation
by implementing the pipeline in hardware (1982)

§ To use the system, application programmers used a library
called GL

§ With GL, it was relatively simple to program three dimensional
interactive applications

7

OpenGL

§ The success of GL lead to OpenGL (1992), a platform-
independent API that was
§ Easy to use
§ Close enough to the hardware to get excellent performance
§ Focus on rendering
§ Omitted windowing and input to avoid window system dependencies

§ OpenGL is controlled by OpenGL Architectural Review Board
(ARB), members include SGI, IBM, Nvidia, HP, 3D labs,
Microsoft.

§ Since 2003 OpenGL supports vertex/pixel shaders

8

OpenGL Features

§ Texture mapping
§ z-buffering
§ Double buffering
§ Lighting effects
§ Smooth shading
§ Material properties
§ Alpha blending
§ Transformation matrices

9

Languages

§ C#: The framework Tao for Microsoft .NET includes OpenGL between other multimedia
libraries

§ Delphi: Dot[4]
§ Fortran: f90gl supports OpenGL 1.2, GLU 1.2 and GLUT 3.7 [5]
§ Java:
§ Java Bindings for OpenGL (JSR 231) and Java OpenGL (JOGL)
§ Lightweight Java Game Library (LWJGL)
§ Lisp: See the cl-opengl project at common-lisp.net
§ Perl:
§ Perl OpenGL (POGL) module - shared libs written in C
§ C vs Perl and Perl vs Python benchmarks
§ PHP: See http://phpopengl.sourceforge.net/
§ Python: PyOpenGL supports GL, GLU and GLUT [8]
§ Ruby: See [9] - supports GL, GLU and GLUT
§ Smalltalk as seen in Croquet Project running on Squeak Smalltalk
§ Visual Basic: ActiveX Control

Programming with OpenGL

11

Related APIs

§ OpenGL Utility Library (GLU)
§ Utilities e.g: setting camera view and projection

§ GLUT (OpenGL Utility Toolkit)
§ An auxiliary library

§ A portable windowing API
§ Easier to show the output of your OpenGL application
§ Not officially part of OpenGL

§ Handles:
§ Window creation
§ OS system calls: mouse buttons, movement, keyboard, etc…

12

Related APIs (cont’)

§ OpenGL Extension Wrangler Library (GLEW)
§ Determines which OpenGL extensions are supported on the target

platform
§ Cross-platform open-source C/C++ extension loading library

§ Graphics Library Framework (GLFW)
§ Provides utilities to create and handle windows, OpenGL contexts,

keyboard, mouse..

13

OpenGL and Related APIs

14

Model, View and Projection (MVP) matrices

M V

P

Object space World space Camera space

Clip
space

glMatrixMode(GL_MODELVIEW);
…
glMatrixMode(GL_PROJECTION);

15

Coordinate system

16

OpenGL configuration for Visual
Studio
§ Download GLUT binaries for windows from “Nate Robins” ‘s website

http://www.xmission.com/~nate/glut.html
§ Put the files at appropriate folders

§ Make sure Visual Studio c++ projects links in the GLUT/gl/glu
libraries. Go to Menu: “Project -> (your-project-name) Properties”

Tab: “Configuration Properties -> Linker -> Input”
Under “Additional Dependencies”, add “glut32.lib opengl32.lib

glu32.lib”
§ Under Configuration Properties->C++->General->Additional

Include Directories : add
"C:\Program Files\Microsoft Visual Studio

8\VC\PlatformSDK\Include"

File Location
glut32.dll C:\WINDOWS\system\ (or system32)

glut32.lib C:\Program Files\Microsoft Visual Studio 2005\VC\PlatformSDK\Lib

glut.h C:\Program Files\Microsoft Visual Studio 2005\VC\PlatformSDK\Include\gl

17

Naming convention

§ Begins with lower case: gl, glu, glut, glew, glfw
§ Fllowed by the purpose of the function, in camel case (initial-

capitalized) e.g., glColor
§ Followed by specifications for the parameters, e.g., glColor3f
§ OpenGL Command Formats

18

OpenGL Geometric Primitives

GL_QUAD_STRIP

GL_POLYGON

GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN

GL_POINTS
GL_LINES

GL_LINE_LOOPGL_LINE_STRIP

GL_TRIANGLES

GL_QUADS

§ All geometric primitives are specified by vertices
§ Per-vertex data:

§ coordinates, colors, normals, texture coordinates

19

Basic setup code
#include <windows.h> // for MS Windows

#include <GL/glut.h> // GLUT, include glu.h and gl.h

void display() {/* Handler for window-repaint event. Called back when the window first appears and whenever the window
needs to be re-painted. */

glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set background color to black and opaque

glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer (background)

glBegin(GL_TRIANGLES);

glVertex3f(-0.5f, -0.4f, -1.0f);

glVertex3f(0.5f, -0.4f, -1.0f);

glVertex3f(0.0f, 1.0f, -1.0f);

glEnd();

glFlush(); // Render now

}

int main(int argc, char** argv) {

glutInit(&argc, argv); // Initialize GLUT

glutInitWindowSize(640, 480); // Set the window's initial width & height - non-square

glutInitWindowPosition(50, 50); // Position the window's initial top-left corner

glutCreateWindow("Model Transform"); // Create window with the given title

glutDisplayFunc(display); // Register callback handler for window re-paint event

glutMainLoop(); // Enter the infinite event-processing loop

return 0;

}

20

Matrix Operations

§ Specify Current Matrix Stack
§ glMatrixMode(GL_MODELVIEW or GL_PROJECTION)

§ Other Matrix or Stack Operation
§ glLoadIdentity() glPushMatrix() glPopMatrix()

§ Viewport
§ usually same as window size
§ viewport aspect ratio should be same as projection

transformation or resulting image may be distorted
§ glViewport(x, y, width, height)

21

Applying Projection

§ Transformations
§ Typical use (orthographic projection)

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom, top, zNear, zFar);

§ 2 projection methods:

void gluOrtho (

GLdouble left,

GLdouble right,

GLdouble bottom,

GLdouble top,

GLdouble zNear,

GLdouble zFar,

);

void gluPerspective (

GLdouble fovy,

GLdouble aspect,

GLdouble zNear,

GLdouble zFar

);

22

Viewing Transformations

§ Position the camea/eye in the scene
§ To “fly through” a scene
§ change viewing transformation and redraw

scene
gluLookAt(eye x ,eye y ,eye z ,

aim x ,aim y ,aim z ,
up x ,up y ,up z)

§ up vector determines unique orientation
§ careful of degenerate positions

23

glu Viewing

§ Constructing an ‘M’ matrix
§ gluLookAt(ex,ey,ez, //eye point COP

cx,cy,cz, //point of interest
upx,upy,upz //up vector

)

§ Matrix that maps
§ (cx,cy,cz) to -ve Z-axis
§ (ex,ey,ez) becomes the origin
§ (upx,upy,upz) becomes the y-axis

§ Premultiplies current matrix

e

c

24

glu Perspective

§ To specify projection matrix:
§ gluPerspective(fovy, //field of view degrees

aspect,//xwidth/yheight
zNear,//front clipping plane
zFar //back clipping plane
)

fovy

y

-z

25

Cautions

§ OpenGL uses a RH coordinate system throughout
(hence the default VPN is the negative z-axis).

§ It adopts the convention of points as column
vectors and post-multiplication:

§ The transpose of all our matrices should be used!

1 0 0 a
0 1 0 b
0 0 0 c
0 0 0 1

æ

è

ç
ç
ç
ç ç

ö

ø

÷
÷
÷
÷ ÷

x
y
z
1

æ

è

ç
ç
ç
ç ç

ö

ø

÷
÷
÷
÷ ÷

26

Modeling Transformations

§ Move object
§ glTranslate{fd}(x, y, z)

§ Rotate object around arbitrary axis
§ glRotate{fd}(angle, x, y, z)
§ angle is in degrees

§ Dilate (stretch or shrink) object
§ glScale{fd}(x, y, z)

27

Common Transformation Usage

§ Example of reshape() routine
§ restate projection & viewing transformations

§ Usually called when window resized
§ Registered a callback for glutReshapeFunc()

28

Reshape(): Perspective & LookAt

void changeSize(int w, int h) {
if(h == 0)h = 1; // Prevent a divide by zero, when window is
too short
float ratio = 1.0* w / h;

// Reset the coordinate system before modifying
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// Set the viewport to be the entire window

glViewport(0, 0, w, h);
// Set the correct perspective.
gluPerspective(60, ratio,0.1, 100);//fovy, ratio, near, far

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt (Eye.x, Eye.y, Eye.z, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0);//eye, at, up

}

Shaders

30

Shaders

§ OpenGL supports 02 shaders
§ Vertex Shader for each vertex
§ Fragment Shader for each fragment

§ Language: GL Shader Language (GLSL)
§ Compiled at runtime
§ Best practice: reuse provided function

§ GLuint LoadShaders(const char * vertex_file_path,const char *
fragment_file_path)

31

Vertex Shader Example

// Input vertex data, different for all executions of this shader.

layout(location = 0) in vec3 vertexPosition_modelspace;

void main(){

gl_Position.xyz = vertexPosition_modelspace;

gl_Position.w = 1.0;

}

GLuint programID = LoadShaders(
"SimpleVertexShader.vertexshader",
"SimpleFragmentShader.fragmentshader");

glUseProgram(programID);

glVertexAttribPointer(
0, // attribute 0. No particular reason for
0, but must match the layout in the shader.
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);

C++ GLSL

¡ layout(location = 0)” refers to the buffer we use to feed
the vertexPosition_modelspace attribute

32

Fragment Shader Example

#version 330 core

// Ouput data

out vec3 color;

void main()

{

// Output color = red

color = vec3(1,0,0);

}

