Sets, Mappings and Functions

Doan Nhat Quang

doan-nhat.quang@usth.edu.vn
University of Science and Technology of Hanoi
ICT department

Definition

A set is a collection of definite, distinct objects m, concrete or imaginary, thus forming a new object M .
If m is an element of M, we write $m \in M$.

We call the set with no elements the empty set $\varnothing=\{ \}$.

Any number system (the naturals, the integers, etc.) can be a set.

$$
\mathbb{Z}_{8}=0,1,2,3,4,5,6,7
$$

$$
I=0,1
$$

If every element of the set N is also an element of the set M (that is, $\forall m \in N \rightarrow m \in M$), then N is called a subset of M (we write $N \subset M$ or $N \subseteq M$).

Two sets M, N are equal (denoted by $\mathrm{N}=\mathrm{M}$), if $\mathrm{N} \subset \mathrm{M}$ and $M \subset N$.

Let M, N be sets. Then the complement of N in M is

$$
M \backslash N=\{m \in M \mid m \notin N\}
$$

The union of M and N is

$$
M \cup N=\{m \in M \text { or } m \in N\}
$$

The intersection of M and N is

$$
M \cap N=\{m \in M \text { and } m \in N\}
$$

Proposition 1

- Commutativity: $A \cup B=B \cup A$ and $A \cap B=B \cap A$
- Associativity:

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C) \\
& (A \cap B) \cap C=A \cap(B \cap C)
\end{aligned}
$$

- Distributivity:

$$
\begin{aligned}
& (A \cup B) \cap C=(A \cap C) \cup(B \cap C) \\
& (A \cap B) \cup C=(A \cup C) \cap(B \cup C)
\end{aligned}
$$

Proposition 2

- Identity:

$$
\begin{gathered}
A \cap U=A \text { for } A \subset U \\
A \cup \emptyset=A
\end{gathered}
$$

- Complement:

$$
\begin{gathered}
A \cup A^{\prime}=U\left(\mathrm{~A}^{\prime} \text { is the complement of } \mathrm{A}\right) \\
A \cap A^{\prime}=\emptyset \\
A^{\prime \prime}=A
\end{gathered}
$$

Proposition 3

- Idempotence: $A \cap A=A$ and $A \cup A=A$
- Dominance: $A \cup U=U$ and $A \cap \emptyset=\varnothing$
- Absorption laws: $A \cup(A \cap B)=A$ and $A \cap(A \cup B)=A$

Using previous propositions, prove?

Cartesian Products

Definition

Given sets A and B , we can define a new set $A \times B$, called the Cartesian product of A and B, as a set of ordered pairs. That is,

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

Example

Let $A=\{1,2,3\}, B=\{x, y\}$, and $C=\emptyset$ then

$$
\begin{gathered}
A \times B=\{(1, x),(2, x),(3, x),(1, y),(2, y),(3, y)\} \\
A \times C=\emptyset
\end{gathered}
$$

Cartesian Products

We define the Cartesian product of n sets to be

$$
A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{i} \in A_{i} \text { for } \mathrm{i}=1, . ., \mathrm{n}\right\}
$$

If $A_{1}=A_{2}=\ldots=A_{n}$, we write A^{n} for $A \times A \ldots \times A$.

Example

\mathbb{R}^{3} consists of all of the 3-tuples of real numbers.

Cartesian Products

Subsets of $A \times B$ are called relations. A mapping $f \subset A \times B$ from a set A to a set B to be the special type of relationships such that
$a \in A$, there exists a unique $b \in B,(a, b) \in f$
We write $f: A \rightarrow B$

We often write $f(a)=b$ instead of $(a, b) \in A \times B$. A is called the source and B is the target of f.

Mapping

Definition

Intuitively, mapping is a process in which each element of a set X (domain) is associated with one element of a set Y (range/codomain).

- Domain: the set of allowed inputs to a function.
- Range/Codomain: the set of possible outputs from a function.

A map is often used as a synonym for a function. Only a one-to-one and many-to-one can be called a function.

Domain $X=\{1,2,3\}$ and codomain (range) $Y=\{A, B, C, D\}$, the function $f: X \rightarrow Y$ is defined by the set of pairs

$$
\{(1, D),(2, C),(3, C)\}
$$

Which one is a function?

Which one is a function?

- $y=x^{6}+4 x^{3}+1$
- $y=\ln x$
- $y^{3}=\sin x+1$
- $x^{2}+y^{2}=8$

One-to-many and many-to-many mappings are not function. But we still need to consider more...

For a function to exist

- the domain must be defined, or values that can not be in the domain must be identified.

Consider a function

$$
y=\frac{1}{x}
$$

We need to define a domain where $x \in \mathbb{R} \neq 0$. If $x=0$, we can not associate this value with any value in the range.

Consider another function:

$$
y=\sqrt{x+1}
$$

- the domain must be defined, $x \geq-1 \in \mathbb{R}$

Consider another function:

$$
y=\sqrt{x+1}
$$

- the domain must be defined, $x \geq-1 \in \mathbb{R}$

Interval Notation

if $x \in \mathbb{R}$:

- $(a, b)=] a, b[\rightarrow a<x<b$
- $(a, b]=] a, b] \rightarrow a<x \leq b$
- $[a, b)=[a, b[\rightarrow a \leq x<b$
- $[a, b]=a \leq x \leq b$

Functions

How to find the range (but less important)?

- based on the domain values

Operations on Functions

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(f g)(x) & =f(x) g(x) \\
(f-g)(x) & =f(x)-g(x) \\
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)}
\end{aligned}
$$

Suppose D_{f} is the domain of f and D_{g} is the domain of g. Then the domain of $\mathrm{f}+\mathrm{g}, \mathrm{f}-\mathrm{g}, \mathrm{fg}$ are the same and equal to the $D_{f} \cap D_{g}$. While the domain of f / g is $\left.x \in D_{f} \cap D_{g}: g(x) \neq 0\right\}$.

How to find the inverse function $f^{-1}(x)$ of the function $f(x)$?

$$
\begin{aligned}
& f: A \rightarrow B=\{f(x) \mid x \in A\} \\
& f^{-} 1: B \rightarrow A\{x \mid f(x) \in B\}
\end{aligned}
$$

- Domain $\mathrm{f}(\mathrm{x})$ is equal to Range $f^{-1}(x)$
- Range $\mathrm{f}(\mathrm{x})$ is equal to Domain $f^{-1}(x)$

According to the definition, the inverse function does not always exist.

- check the mapping;
- define the domain and range;

$$
\begin{aligned}
& f(x)=2 x+1 ; f^{-1}(x)=\frac{x-1}{2} \\
& f(x)=x^{2} ; f^{-1}(x)= \pm \sqrt{(x)}
\end{aligned}
$$

Do the inverse functions exist?

$$
\left(f \circ f^{-1}\right)(x)=\left(f^{-1} \circ f\right)=x
$$

Note: Function composition $f(g(x))=(f \circ g)(x)$ The domain of $f \circ g$ is $\left\{x \in D_{g}: g(x) \in D_{f}\right\}$, all values x in the domain of g such that $g(x)$ is in the domain of f.

Example 1

Let $f(x)=x^{2}$ and $g(x)=2 x+5$ then calculate $(f \circ g)(x)$ and $(g \circ f)(x)$. Conclude?

Example 1

Let $f(x)=x^{2}$ and $g(x)=2 x+5$ then calculate $(f \circ g)(x)$ and $(g \circ f)(x)$. Conclude?

Example 2

Let $f(x)=x^{3}+1$ and $g(x)=\sqrt{x}-2$ then find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$. Conclude?

Mapping

Definition

Intuitively, an injective (or one-to-one) function never maps distinct elements of its domain to the same element of its codomain.

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1}=x_{2} \\
& f\left(x_{1}\right) \neq f\left(x_{2}\right) \Leftrightarrow x_{1} \neq x_{2}
\end{aligned}
$$

Which one is an injection?

Mapping

Example

$f: X \rightarrow Y$ where $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$
Suppose $f(x)=f(y), 2 x+3=2 y+3$, which implies $x=y$
Other functions are injective:

$$
\begin{gathered}
f(x)=\ln x \\
f(x)=\sqrt{x+1} \\
f(x)=x^{3}+10 x
\end{gathered}
$$

$$
f(x)=x^{2} \text { is not injective, because } f(1)=f(-1)=1
$$

Mapping

Definition

A surjective (or onto) function is defined if, for every element y in the codomain Y, there is at least one element x in the domain X such that $f(x)=y$.

$$
\forall y \in Y, \exists x \in X, f(x)=y
$$

Which one is a surjection?

Mapping

Example

Surjective functions: $f: \mathbb{Z} \rightarrow\{0,1\}, \mathrm{f}(\mathrm{n})=\mathrm{n} \bmod 2$
$f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=2 x+1$

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2} \text { is not surjective } \\
& f: \mathbb{R} \rightarrow \mathbb{R}^{+}, f(x)=x^{2} \text { is surjective }
\end{aligned}
$$

Mapping

Definition

A bijective function is defined if the function is both injective and surjective.

Definition

A bijective function always has the inverse function.

Mapping

Example

Given a matrix 2×2

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

we can define a map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
T(x, y)=(a x+b y, c x+d y)
$$

for all $(x, y) \in \mathbb{R}^{2}$

A mapping from \mathbb{R}^{m} to \mathbb{R}^{n} given by matrices is called linear maps or linear transformations.

Applications

For encoding and decoding:

- Encode a message using a bijective function so that the receiver can decode the encoded message;
- If there is no inverse function, the encoded message can be decoded with another meaning.
This principle is used for data conversion, transformation, projection, etc.
- Conversion between Fahrenheit and Celsius;
- Fourier Transform/Inverse Fourier Transform (analog and digital);

