Sets, Mappings and Functions

Doan Nhat Quang

doan-nhat.quang@usth.edu.vn University of Science and Technology of Hanoi ICT department

Doan Nhat Quang

Sets, Mappings and Functions

3 N 3

Definition

A set is a collection of definite, distinct objects m, concrete or imaginary, thus forming a new object M. If m is an element of M, we write $m \in M$.

We call the set with no elements the empty set $\emptyset = \{\}$.

Any number system (the naturals, the integers, etc.) can be a set.

 $\mathbb{Z}_8=0,1,2,3,4,5,6,7$

I = 0, 1

э

★ Ξ ► < Ξ ► ...</p>

< 4 ► 1

If every element of the set N is also an element of the set M(that is, $\forall m \in N \rightarrow m \in M$), then N is called a subset of M (we write $N \subset M$ or $N \subseteq M$).

Two sets M, N are equal (denoted by N = M), if $N \subset M$ and $M \subset N$.

Let M, N be sets. Then the complement of N in M is

$$M \setminus N = \{m \in M \mid m \notin N\}$$

The **union** of M and N is

$$M \cup N = \{m \in M \text{ or } m \in N\}$$

The intersection of M and N is

 $M \cap N = \{m \in M \text{ and } m \in N\}$

Doan Nhat Quang

3. 3

Proposition 1

- Commutativity: $A \cup B = B \cup A$ and $A \cap B = B \cap A$
- Associativity:

$$(A\cup B)\cup C=A\cup (B\cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Distributivity:

 $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

э

· · · · · · · · · ·

Proposition 2

Identity:

$$A \cap U = A$$
 for $A \subset U$
 $A \cup \emptyset = A$

Complement:

$$A \cup A' = U$$
 (A' is the complement of A)

$$A \cap A' = \emptyset$$
$$\Delta'' - \Delta$$

Doan Nhat Quang

3

Proposition 3

- Idempotence: $A \cap A = A$ and $A \cup A = A$
- ▶ Dominance: $A \cup U = U$ and $A \cap Ø = Ø$
- Absorption laws: $A \cup (A \cap B) = A$ and $A \cap (A \cup B) = A$

Using previous propositions, prove?

Definition

Given sets A and B, we can define a new set $A \times B$, called the Cartesian product of A and B, as a set of ordered pairs. That is,

 $A \times B = \{(a, b) : a \in A, b \in B\}$

Example

Let
$$A = \{1, 2, 3\}$$
, $B = \{x, y\}$, and $C = \emptyset$ then

$$A \times B = \{(1, x), (2, x), (3, x), (1, y), (2, y), (3, y)\}$$
$$A \times C = \emptyset$$

э

We define the Cartesian product of n sets to be

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) : a_i \in A_i \text{ for } i = 1, \ldots, n\}$$

If
$$A_1 = A_2 = ... = A_n$$
, we write A^n for $A \times A.... \times A$.

Example

 \mathbb{R}^3 consists of all of the 3-tuples of real numbers.

Subsets of $A \times B$ are called relations. A mapping $f \subset A \times B$ from a set A to a set B to be the special type of relationships such that

 $a \in A$, there exists a unique $b \in B$, $(a, b) \in f$

We write $f : A \rightarrow B$

We often write f(a) = b instead of $(a, b) \in A \times B$. A is called **the** source and B is **the target** of f.

Definition

Intuitively, mapping is a process in which each element of a set X (domain) is associated with one element of a set Y (range/codomain).

- **Domain**: the set of allowed inputs to a function.
- Range/Codomain: the set of possible outputs from a function.

A map is often used as a synonym for a function. Only a **one-to-one** and **many-to-one** can be called a function.

Domain $X = \{1, 2, 3\}$ and codomain (range) $Y = \{A, B, C, D\}$, the function $f : X \to Y$ is defined by the set of pairs $\{(1, D), (2, C), (3, C)\}$

Which one is a function?

Doan Nhat Quang

Sets, Mappings and Functions

3

э

< 回 > < 回 > < 回 >

One-to-many and many-to-many mappings are not function. But we still need to consider more...

For a function to exist

the domain must be defined, or values that can not be in the domain must be identified.

Consider a function

$$y = \frac{1}{x}$$

We need to define a domain where $x \in \mathbb{R} \neq 0$. If x = 0, we can not associate this value with any value in the range.

3

Interval Notation

if $x \in \mathbb{R}$:

3

How to find the range (but less important)?

based on the domain values

э

Operations on Functions

$$(f+g)(x) = f(x) + g(x)$$
$$(fg)(x) = f(x)g(x)$$
$$(f-g)(x) = f(x) - g(x)$$
$$(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$$

Suppose D_f is the domain of f and D_g is the domain of g. Then the domain of f+g, f-g, fg are the same and equal to the $D_f \cap D_g$. While the domain of f/g is $x \in D_f \cap D_g : g(x) \neq 0$.

How to find the inverse function $f^{-1}(x)$ of the function f(x)?

$$f: A \to B = \{f(x) \mid x \in A\}$$
$$f^{-1}: B \to A\{x \mid f(x) \in B\}$$

• Domain
$$f(x)$$
 is equal to Range $f^{-1}(x)$

• Range
$$f(x)$$
 is equal to Domain $f^{-1}(x)$

According to the definition, the inverse function does not always exist.

- check the mapping;
- define the domain and range;

Sets, Mappings and Functions

<ロト < 四ト < 三ト < 三ト

3

$$f(x) = 2x + 1; f^{-1}(x) = \frac{x - 1}{2}$$
$$f(x) = x^2; f^{-1}(x) = \pm \sqrt{(x)}$$

Do the inverse functions exist?

$$(f \circ f^{-1})(x) = (f^{-1} \circ f) = x$$

Note: Function composition $f(g(x)) = (f \circ g)(x)$ The domain of $f \circ g$ is $\{x \in D_g : g(x) \in D_f\}$, all values x in the domain of g such that g(x) is in the domain of f.

Example 1

Let $f(x) = x^2$ and g(x) = 2x + 5 then calculate $(f \circ g)(x)$ and $(g \circ f)(x)$. Conclude?

э

• • = • • = •

Example 1

Let $f(x) = x^2$ and g(x) = 2x + 5 then calculate $(f \circ g)(x)$ and $(g \circ f)(x)$. Conclude?

Example 2

Let $f(x) = x^3 + 1$ and $g(x) = \sqrt{x} - 2$ then find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$. Conclude?

3

通 ト イ ヨ ト イ ヨ ト

Mapping

Definition

Intuitively, an injective (or one-to-one) function never maps distinct elements of its domain to the same element of its codomain.

 $f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2$

 $f(x_1) \neq f(x_2) \Leftrightarrow x_1 \neq x_2$

Which one is an injection?

Example

$$f: X \to Y$$
 where $f(x) = 2x + 3$

Suppose f(x) = f(y), 2x + 3 = 2y + 3, which implies x = y

Other functions are injective:

f(x) = lnx $f(x) = \sqrt{x+1}$ $f(x) = x^3 + 10x$

 $f(x) = x^2$ is not injective, because f(1) = f(-1) = 1

Doan Nhat Quang

3

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Mapping

Definition

A surjective (or onto) function is defined if, for every element y in the codomain Y, there is at least one element x in the domain X such that f(x) = y.

$$\forall y \in Y, \exists x \in X, f(x) = y$$

Which one is a surjection?

Example

Surjective functions: $f : \mathbb{Z} \to \{0, 1\}$, $f(n) = n \mod 2$ $f : \mathbb{R} \to \mathbb{R}, f(x) = 2x + 1$

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$
 is not surjective
 $f: \mathbb{R} \to \mathbb{R}^+, f(x) = x^2$ is surjective

Doan Nhat Quang

Sets, Mappings and Functions

• • = • • = •

Definition

A bijective function is defined if the function is both injective and surjective.

Definition

A bijective function always has the inverse function.

∃▶ ∢ ∃▶

Example

Given a matrix 2×2 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ we can define a map $T : \mathbb{R}^2 \to \mathbb{R}^2$ by T(x, y) = (ax + by, cx + dy)for all $(x, y) \in \mathbb{R}^2$

A mapping from \mathbb{R}^m to \mathbb{R}^n given by matrices is called linear maps or linear transformations.

For encoding and decoding:

- Encode a message using a bijective function so that the receiver can decode the encoded message;
- If there is no inverse function, the encoded message can be decoded with another meaning.

This principle is used for data conversion, transformation, projection, etc.

- Conversion between Fahrenheit and Celsius;
- Fourier Transform/Inverse Fourier Transform (analog and digital);