Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

Neural Network

Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

• Logistic regression model, with sigmoid:

$$\hat{y}_i = \sigma(w_1 x_i^{(1)} + w_2 x_i^{(2)} + w_0)$$

• Two steps:

(1) Linear sum:

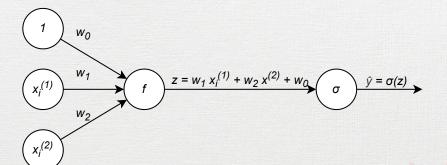
$$z = w_1 x_i^{(1)} + w_2 x_i^{(2)} + 1 * w_0$$

(2) Apply sigmoid function:

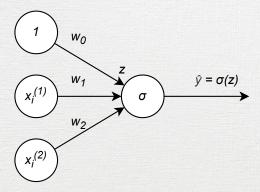
$$\hat{y} = \sigma(z)$$

Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn


(1)

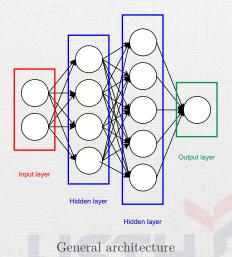
(2)


(3)

Logistic Regression vs Neural Network

Neural Network

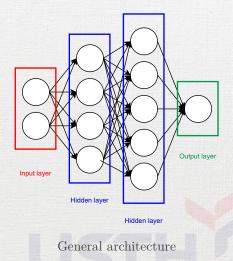
Neural Network



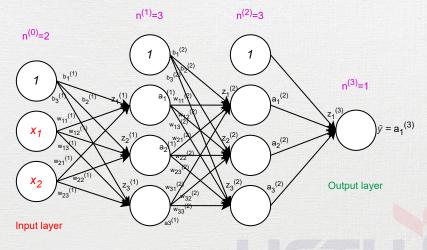
Flowchart of logistic regression model

- w_0 called bias coefficient, or free coefficient
- Sigmoid function is called activation function

General Neural Network Model


- Input layer and output layer are required
- Hidden layers are optional
- Total layers = # layers 1
- Each circle is called one node

General Neural Network Model


Each node in hidden layer and output layer:

- Is connected with all nodes with previous layer with the coefficents w
- Has a bias coefficient w_0
- Follows two steps of linear sum and appliance of activation function (sigmoid)

Logistic Regression vs Neural Network

General Neural Network Model

Hidden layer 1 Hidden layer 2

Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

(4)

(5)

General Neural Network Model

- Node *i* in layer *l* with bias $b_i^{(l)}$ has 2 steps:
- (1) Linear sum:

$$z_i^{(l)} = \sum_{j=1}^l a_j^{n^{(l-1)}} w_{ji}^{(l)} + b_i^{(l)}$$

Where $n^{(l)}$ is the number of neurons in layer l(2) Apply activation function:

$$a_i^{(l)} = \sigma(z_i^{(l)})$$

Neural Network

(6)

(7)

General Neural Network Model

• At node 2 of layer 1, we have:

$$z_2^{(1)} = x_1 w_{12}^{(1)} + x_2 w_{22}^{(1)} + b_2^{(1)}$$
$$a_2^{(1)} = \sigma(z_2^{(1)})$$

• At node 3 of layer 2, we have:

$$\begin{aligned} z_3^{(2)} &= a_1^{(1)} w_{13}^{(2)} + a_2^{(1)} w_{23}^{(2)} + a_3^{(1)} w_{33}^{(2)} + b_3^{(2)} \\ a_3^{(2)} &= \sigma(z_3^{(2)}) \end{aligned}$$

Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

• Let $x = a^{(0)}$ be the input layer, with size 3×1 , we have:

$$z^{(1)} = \begin{bmatrix} z_1^{(1)} \\ z_2^{(1)} \\ z_3^{(1)} \end{bmatrix} = \begin{bmatrix} a_1^{(0)} w_{11}^{(1)} + a_2^{(0)} w_{21}^{(1)} + a_3^{(0)} w_{31}^{(1)} + b_1^{(1)} \\ a_1^{(0)} w_{12}^{(1)} + a_2^{(0)} w_{22}^{(1)} + a_3^{(0)} w_{32}^{(1)} + b_2^{(1)} \\ a_1^{(0)} w_{13}^{(1)} + a_2^{(0)} w_{23}^{(1)} + a_3^{(0)} w_{33}^{(1)} + b_3^{(1)} \end{bmatrix}$$
(8)
$$= (W^{(1)})^T a^{(0)} + b^{(1)}$$

• Let $a^{(1)}$ be the output of the first layer. We have

$$a^{(1)} = \sigma(z^{(1)})$$

Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

12 / 30

(9)

• The output of the network will be

$$z^{(2)} = (W^{(2)})^T a^{(1)} + b^{(2)}$$
$$a^{(2)} = \sigma(z^{(2)})$$
$$z^{(3)} = (W^{(3)})^T a^{(2)} + b^{(3)}$$
$$\hat{y} = a^{(3)} = \sigma(z^{(3)})$$

Neural Network

13 / 30

(10)

Logistic Regression vs Neural Network

Feedforward

 $a^{(0)} \longrightarrow_{Z} (1) \longrightarrow_{A} (1) \longrightarrow_{Z} (2) \longrightarrow_{A} (2) \longrightarrow_{Z} (3) \longrightarrow_{\hat{y}=a} (3)$

Loss function

- Gradient descent algorithm
- Step of derivative calculation of coefficients of loss function is done with the backpropagation algorithm

Loss function

- Gradient descent algorithm
- Step of derivative calculation of coefficients of loss function is done with the backpropagation algorithm
- next lecture

Logistic Regression vs Neural Network

Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

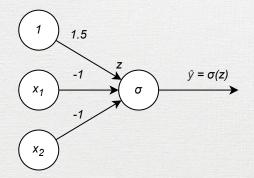
Logistic Regression vs Neural Network

Problem: AND

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

Neural Network

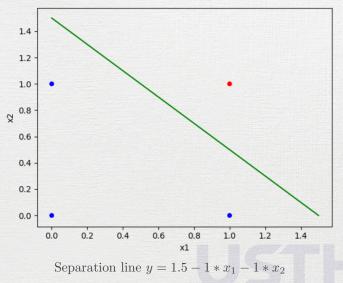
Tran Giang Son, tran-giang.son@usth.edu.vn


Problem: AND

Flow chart for the problem $x_1 \& x_2$

Logistic Regression vs Neural Network

Problem: AND



Flow chart for the problem $!(x_1 \& x_2)$

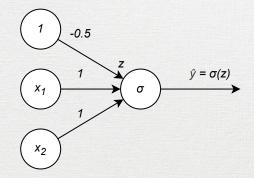
Neural Network

Feedforward

Problem: AND

Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn


Problem: OR

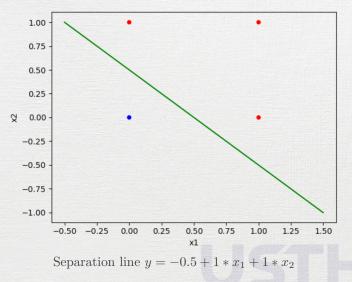
x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	1

Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

Problem: OR

Flow chart for the problem $x_1 \mid x_2$

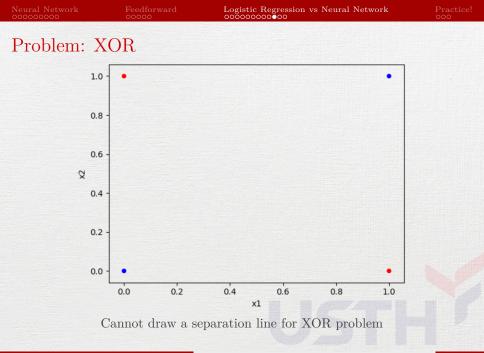


Neural Network

Feedforward

Logistic Regression vs Neural Network $_{0000000000000}$

Problem: OR


Neural Network

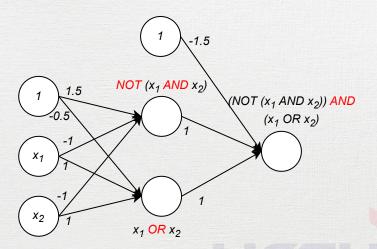
Logistic Regression vs Neural Network

Problem: Exclusive OR (XOR)

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

Neural Network

Problem: XOR


Rewrite XOR problem:

$\overline{x_1}$	x_2	$x_1 \oplus x_2$	$x_1 \& x_2$	$!(x_1 \& x_2)$	$x_1 \mid x_2$	$!(x_1 \& x_2) \& (x_1 x_2)$
0	0	0	0	1	0	0
0	1	1	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	0	1	0

Logistic Regression vs Neural Network $_{\texttt{OOOOOOOOOO}}$

Solution: Neural Network XOR

 $x_1 \oplus x_2$ with neural network

Practice!

Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

Labwork 4: Neural Network

- Implement (from scratch!) a neural network, using proper object oriented programming concepts
 - dict, tuple, list ... are difficult to maintain
 - Input: a text file
 - First line: number of layers N
 - Next N lines: number of neurons for the i^{th} layer
 - First layer is the input layer, last layer is the output layer
 - Output: a properly initialized neural network, with 2 options for weights and bias initialization:
 - Randomly [0..1]
 - From text file
 - Supports feedforward

Labwork 4: Neural Network

- Write a report (in LAT_EX):
 - Name it « Report.4.Neural.Network.tex »
 - How you design and implement the network architecture
 - How you implement feedforward
 - Experiment with the XOR network
 - Initialize network weight as in slides
 - Run with different inputs: (0, 0), (0, 1), (1, 0), (1, 1)
- Push your code and report to your forked repository