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Layers
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General Neural Network Model

Each node in hidden layer and
output layer:

• Each hidden layer is called
a fully connected layer (or
Dense layer)

• Each node in hidden layer
is connected to all nodes in
the previous layer

Input layer

Hidden layer

Hidden layer

Output layer

General architecture
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Simple Problem

• Input: color image of size 64 * 64

• Output: image contains human face or not

• Neural network model?
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Simple Problem

a1x1

x12288

a2

...

a1000

...

x2

• Color image size 64 * 64 needs 64 * 64 * 3 pixels

• Input layer has 12288 values

• Hidden layer 1 has 1000 nodes

• # of weights is 12,288,000 + # of bias is 1000
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Simple Problem
a1x1

x12288

a2

...

a1000

...

x2

• What if
• Image size is 512 × 512

• 10 hidden layers

• 1000 neurons each?

512 × 512 × 100010 × 1
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Convolution

• Neuron depends only on a few local input neurons

• Similarly to the local connectivity of visual features in
images
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Convolution

• x is a 3 × 3 chunk (yellow area) of the image (green area)

• Each output neuron is parametrized with the 3 × 3 weight
matrix w (small red numbers in yellow area)

• Output image contains convolved features (in pink)

• The process is performed by sliding the 3 × 3 window
through the image
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Padding

Current pixel

Image pixel

Padded pixel

Border of the image is padded with zero values
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Stride

Calculated
output pixel

Image pixel

Padded pixel

Stride=2
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Multiple input, single output

b
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Multiple input, single output

Kernel 3 * 3 * 3
Stride 1 Padding 1 Output N * NInput image N * N * 3
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Multiple input, multiple output

Output 1: N * N
Input image N * N * 3

Kernel 1: 3 * 3 * 3
Stride 1 Padding 1

Kernel 2: 3 * 3 * 3
Stride 1 Padding 1

Output 1: N * N

Output of the first convolutional layer will be input of the next
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General Convolutional Layer

Input H * W * D

Kernel F * F * D
Stride D Padding P Output

((H - F + 2P)/S + 1) * ((W - F + 2P)/S + 1) * L

• Number of parameters of each kernel is F ∗ F ∗ D + 1 (for
bias)

• Number of parameters of layer is K ∗ (F ∗ F ∗ D + 1)

• Output of the convolutional layer will be applied with a
non-linear activation function before being the input of the
next convolutional layer
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Element-wise activation functions

• Blue line: activation function

• Green line: derivative

• Relu activation function is often used after each
convolutional layer since it is an efficient activation function
without heavy computation
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Pooling

12 20 0

8 12 5 0

34 79 24 59

88 192 32 82

30

20 30

192 82
maxpool

minpool
8 5

34 24

• Pooling layer is placed between two convolutional layers to
reduce sizes of output data and still preserve the important
features of images
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Pooling

12 20 0

8 12 5 0

34 79 24 59

88 192 32 82

30

20 30

192 82
maxpool

minpool
8 5

34 24

• In practice, pooling layer with size = (2,2), stride = 2 and
padding = 0 is often used so that output width and height
of data are reduced half while depth is unchanged

Note: in some models, convolutional layer with stride > 1 is used
to reduce data sizes instead of pooling layer
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Flatten

12 20 0

8 12 5 0
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Flatten

• Tensor of output of last layer with size (H ∗ W ∗ D) is
flatten to the vector with size (H ∗ W ∗ D, 1)

• The fully connected layers are then applied to this vector to
combine different image features learned by convolutional
layers to produce output of the model
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Softmax

• Apply the standard exponential function to each element zi

of the input vector z.

σ(z)i = ezi∑K
j=1 ezj

(1)

With

K∑
i=1

σ(z)i = 1 (2)

• Each value in the output of the softmax function is
interpreted as the probability of membership for each class
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Softmax

• Softmax activation is used to normalize the outputs of the
last dense layer, converting them from weighted sum values
into probabilities that sum to 1

• Specifically, softmax activation outputs one value for each
node in the output layer.
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Classical Networks
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Classical Architectures

Input

Conv blocks:

• Convolution + activation (relu)

• Convolution + activaton (relu)

• . . .

• Maxpooling 2x2

Output

• Fully connected layers

• Softmax / Sigmoid activation function
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Classical Architectures

Last output fully connected layers

• If only one neuron: Sigmoid activation function

• If multiple neurons: Softmax activation function
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Feature Extraction

Visualization of image features learned automatically by convolutional
layers
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Popular Networks

• VGG (Visual Geometry Group)

• ResNet (Residual Network)
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VGG Architecture

• VGG is a deep CNN architecture containing classical blocks
of CNN such as convolutional layers (conv), pooling layers
(pool) and fully connected layers (fc)

• Network architectures: VGG16, VGG19

• VGG is proposed by Simonyan, Karen, and Zisserman in
“Very deep convolutional networks for large-scale image
recognition.” (2014)
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VGG16

• From left to right: size of output features decreases, but
depth increases
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VGG16

• Conv: size 3x3, padding = 1, stride = 1, # of kernels = 64
or dept of output layer

• Pool/2: max pooling layer with size = 2x2, stride = 2

• fc 4096: fully connected layer with 4096 nodes

• After passing through all conv layers and pooling layers,
data are flattened and fed into the fc layers
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ResNet

Residual learning: a building block

• ResNet introduces the concepts called residual block using
skip (shortcut) connection

• A ResNet architecture is created by stacking a set of
residual blocks together

Convolutional Neural Network Tran Giang Son, tran-giang.son@usth.edu.vn 29 / 46



Layers Classical Networks Image Classification Other Techniques Practice!

ResNet

• ResNet solves the problem of vanishing or exploding
gradient

• ResNet is able to support hundreds or thousands of
convolutional layers

• Proposed by He, Kaiming, et al. “Deep residual learning for
image recognition.” CVPR. 2016.
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ResNet

ResNet34 vs VGG19 vs 34-layer plain
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VGG19 vs ResNet50

Factor VGG19 ResNet50

Accuracy 5.25% top-5 7.1%
Parameters 25M 138M
Complexity 3.8B FLOPS 15.3B FLOPS
Convolution Fully conv Several fully connected layers
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Image Classification
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What?
• Image classification is the process of predicting the class of

an image

• Images are expected to have only one class for each image

• “Dog vs. cat”: binary classification of images

Convolutional Neural Network Tran Giang Son, tran-giang.son@usth.edu.vn 34 / 46



Layers Classical Networks Image Classification Other Techniques Practice!

What?
• Digit classification: multi-class classification
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What?
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Dataset

• Standardize directories for training set, validation set and
test set

• Standardize images prior to the model requirement
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Sample Model
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Sample Model
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Performance
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Other Techniques
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Activation Function

• Softmax activation function

σ(z)i = ezi∑K
j=1 ezj

(3)

• Sigmoid activation function

σ(z) = 1
1 + e−z

(4)
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Loss Function

• Binary cross entrophy

J = − 1
N

N∑
i=1

(yi log(ŷi) + (1 − yi) ∗ log(1 − ŷi)) (5)

• Categorical cross entrophy: softmax + cross entrophy

J = −log

(
esp∑C
j esj

)
(6)

In which sj is the prediction for the jth class, sp is the prediction
of the model for the positive class, C is the total number of
classes.
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Practice!
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Labwork 6: Convolutional Neural Network

• Implement VGG19 using a deep learning framework
• Problem: Image classification

• Input: image

• Output: class of the input image

• Train and test the implemented network on a dataset of
your choice

• Note: don’t load a pretrained model!
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Labwork 6: Neural Network

• Write a report (in LATEX):
• Name it « Report.6.CNN.tex »

• How you design and implement the network architecture

• Evaluation of the network using classification metrics
• Accuracy

• Precision

• Recall

• F1-score

• Extra: comparison with ResNet19 if you are fast enough :)

• Push your code and report to your forked repository
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