Convolutional Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

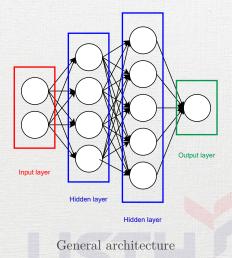
Convolutional Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

Layers

Practice! 000

Convolutional Neural Network

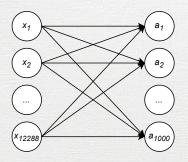

Tran Giang Son, tran-giang.son@usth.edu.vn

mage Classification 0000000 Other Techni 000 Practice!

General Neural Network Model

Each node in hidden layer and output layer:

- Each hidden layer is called a fully connected layer (or Dense layer)
- Each node in hidden layer is connected to all nodes in the previous layer

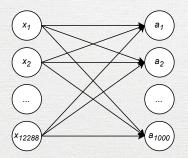

Simple Problem

- Input: color image of size 64 * 64
- Output: image contains human face or not
- Neural network model?

mage Classification

Other Techniqu 000 Practice!

Simple Problem



- Color image size 64 * 64 needs 64 * 64 * 3 pixels
- Input layer has 12288 values
- Hidden layer 1 has 1000 nodes
- # of weights is 12,288,000 + # of bias is 1000

mage Classification

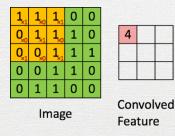
Other Techr 000 Practice 000

Simple Problem

- What if
 - Image size is 512×512
 - 10 hidden layers
 - 1000 neurons each?

$512\times512\times1000^{10}\times1$

Convolutional Neural Network

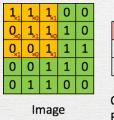

Tran Giang Son, tran-giang.son@usth.edu.vn

mage Classification

Other Techniques

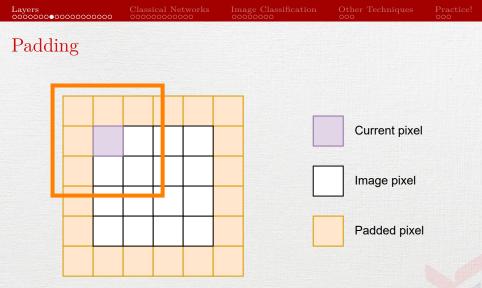
Practice! 000

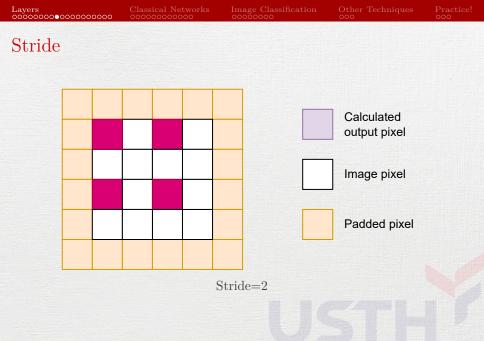
Convolution


- Neuron depends only on a few local input neurons
- Similarly to the local connectivity of visual features in images

mage Classificatior

Other Techr 000 Practice!

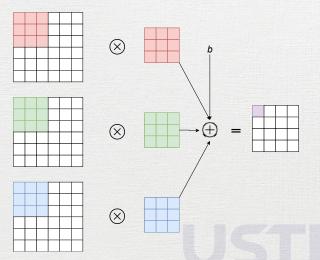

Convolution



Convolved Feature

- x is a 3×3 chunk (yellow area) of the image (green area)
- Each output neuron is parametrized with the 3×3 weight matrix w (small red numbers in yellow area)
- Output image contains convolved features (in pink)
- The process is performed by sliding the 3 × 3 window through the image

Border of the image is padded with zero values

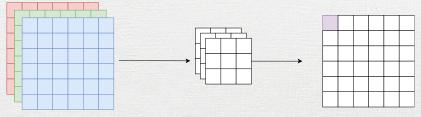

Convolutional Neural Network

mage Classification

Other Techniques

Practice!

Multiple input, single output



Convolutional Neural Network

mage Classification

Other Techniques

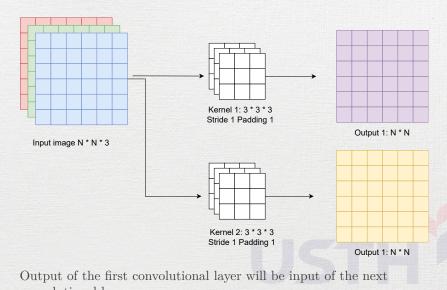
Multiple input, single output

Input image N * N * 3

Kernel 3 * 3 * 3 Stride 1 Padding 1

Output N * N

Convolutional Neural Network

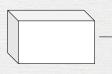

Tran Giang Son, tran-giang.son@usth.edu.vn

mage Classificatior

Other Techniques

Practice! 000

Multiple input, multiple output


Convolutional Neural Network

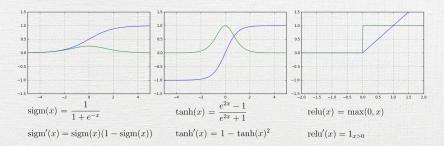
Tran Giang Son, tran-giang.son@usth.edu.vn

mage Classificatio: 0000000 Other Techniq

Practice!

General Convolutional Layer

Input H * W * D

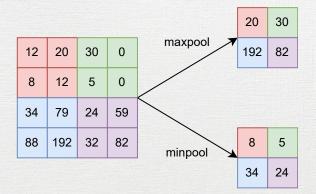

Output ((H - F + 2P)/S + 1) * ((W - F + 2P)/S + 1) * L

- Number of parameters of each kernel is F * F * D + 1 (for bias)
- Number of parameters of layer is K * (F * F * D + 1)
- Output of the convolutional layer will be applied with a non-linear activation function before being the input of the next convolutional layer

mage Classification

Other Techi 000 Practice!

Element-wise activation functions

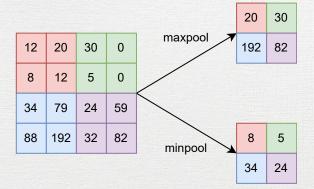


- Blue line: activation function
- Green line: derivative
- Relu activation function is often used after each convolutional layer since it is an efficient activation function without heavy computation

nage Classificatio 0000000 Other Technic

Practice!

Pooling


• Pooling layer is placed between two convolutional layers to reduce sizes of output data and still preserve the important features of images

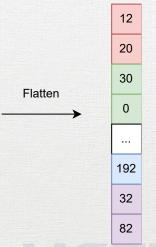
nage Classification

Other Technique

Practice!

Pooling

• In practice, pooling layer with size = (2,2), stride = 2 and padding = 0 is often used so that output width and height of data are reduced half while depth is unchanged


Note: in some models, convolutional layer with stride > 1 is used to reduce data sizes instead of pooling layer Convolutional Neural Network Tran Giang Son, tran-giang.son@usth.edu.vn 17/46

mage Classification

on Other Te $_{000}$

Flatten

12	20	30	0
8	12	5	0
34	79	24	59
88	192	32	82

• Tensor of output of last layer with size (H * W * D) is flatten to the vector with size (H * W * D, 1)

Convolutional Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

Softmax

• Apply the standard exponential function to each element z_i of the input vector \mathbf{z} .

$$\sigma(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

With

$$\sum_{i=1}^{K} \sigma(\mathbf{z})_i = 1$$

(2)

(1)

• Each value in the output of the softmax function is interpreted as the probability of membership for each class

Softmax

- Softmax activation is used to normalize the outputs of the last dense layer, converting them from weighted sum values into probabilities that sum to 1
- Specifically, softmax activation outputs one value for each node in the output layer.

Convolutional Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

Classical Architectures

Input

Conv blocks:

- Convolution + activation (relu)
- Convolution + activaton (relu)
- ...
- Maxpooling 2x2

Output

- Fully connected layers
- Softmax / Sigmoid activation function

nage Classification

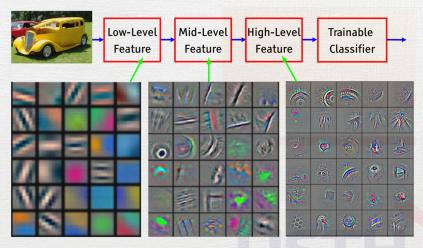
Other Techniques

Practice! 000

Classical Architectures

Last output fully connected layers

- If only one neuron: Sigmoid activation function
- If multiple neurons: Softmax activation function



mage Classificatio

Other Technique

Practice!

Feature Extraction

Visualization of image features learned automatically by convolutional layers

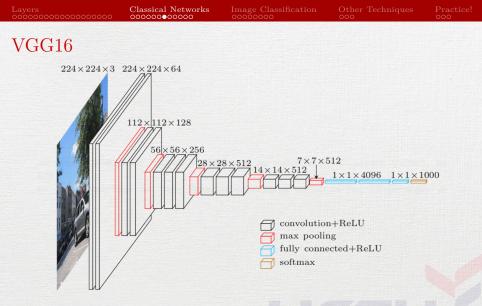
Convolutional Neural Network

mage Classification

Other Techniques

Practice!

Popular Networks


• VGG (Visual Geometry Group)

• ResNet (Residual Network)

VGG Architecture

- VGG is a deep CNN architecture containing classical blocks of CNN such as convolutional layers (conv), pooling layers (pool) and fully connected layers (fc)
- Network architectures: VGG16, VGG19
- VGG is proposed by Simonyan, Karen, and Zisserman in "Very deep convolutional networks for large-scale image recognition." (2014)

• From left to right: size of output features decreases, but depth increases

Convolutional Neural Network

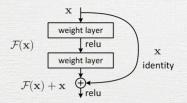
mage Classificatio

ion Other T

her Techniques

Practice!

VGG16



- Conv: size 3x3, padding = 1, stride = 1, # of kernels = 64 or dept of output layer
- Pool/2: max pooling layer with size = $2x^2$, stride = 2
- fc 4096: fully connected layer with 4096 nodes
- After passing through all conv layers and pooling layers, data are flattened and fed into the fc layers

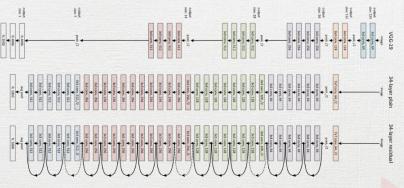
mage Classification

Practice!

ResNet

Residual learning: a building block

- ResNet introduces the concepts called residual block using skip (shortcut) connection
- A ResNet architecture is created by stacking a set of residual blocks together


ResNet

- ResNet solves the problem of vanishing or exploding gradient
- ResNet is able to support hundreds or thousands of convolutional layers
- Proposed by He, Kaiming, et al. "Deep residual learning for image recognition." CVPR. 2016.

mage Classificatio: 0000000

ResNet

ResNet34 vs VGG19 vs 34-layer plain

Convolutional Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

mage Classificatio

Other Techniques

Practice! 000

VGG19 vs ResNet50

Factor	VGG19	ResNet50
Accuracy	5.25% top-5	7.1%
Parameters	25M	138M
Complexity	3.8B FLOPS	15.3B FLOPS
Convolution	Fully conv	Several fully connected layers

Image Classification

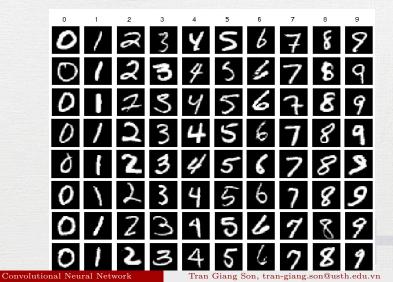
Convolutional Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

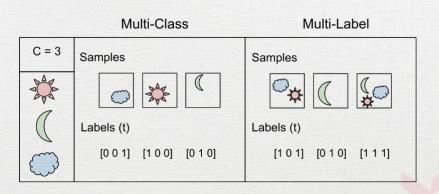
What?

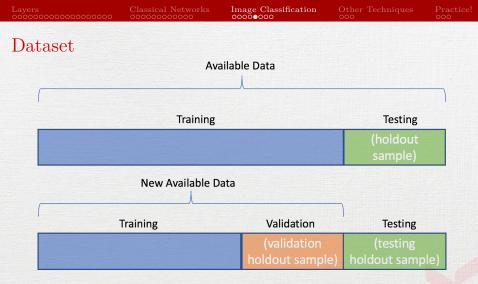
- Image classification is the process of predicting the class of an image
- Images are expected to have only one class for each image
- "Dog vs. cat": binary classification of images

Tran Giang Son, tran-giang.son@usth.edu.vn


Image Classification 0000000

Other Tech


hniques


What?

• Digit classification: multi-class classification

What?

- Standardize directories for training set, validation set and test set
- Standardize images prior to the model requirement

Convolutional Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

Image Classification 00000000

Sample Model

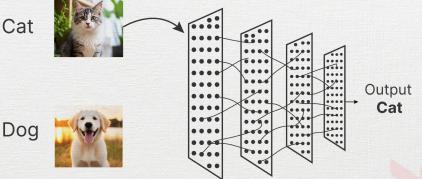
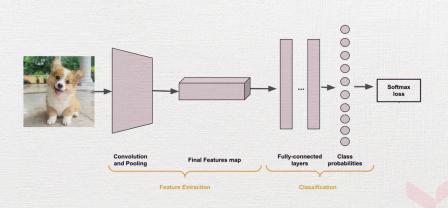
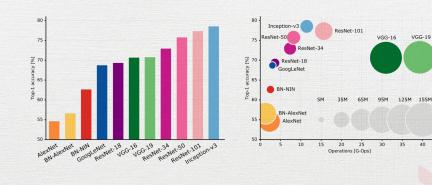



Image Classification 00000000

Other Techniques

Practice!


Sample Model

Convolutional Neural Network

Image Classification 0000000

Performance

40 / 46

40

Other Techniques

Convolutional Neural Network

 $Tran\ Giang\ Son,\ tran-giang.son@usth.edu.vn$

mage Classification

Practice!

(3)

(4)

Activation Function

• Softmax activation function

$$\sigma(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

• Sigmoid activation function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Convolutional Neural Network

Loss Function

• Binary cross entrophy

$$J = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log(\hat{y}_i) + (1 - y_i) * \log(1 - \hat{y}_i))$$
(5)

• Categorical cross entrophy: softmax + cross entrophy

$$J = -\log\left(\frac{e^{s_p}}{\sum_j^C e^{s_j}}\right) \tag{6}$$

In which s_j is the prediction for the j^{th} class, s_p is the prediction of the model for the **positive** class, C is the total number of classes.

Convolutional Neural Network

Practice!

Practice!

Convolutional Neural Network

Tran Giang Son, tran-giang.son@usth.edu.vn

Labwork 6: Convolutional Neural Network

- Implement VGG19 using a deep learning framework
 - Problem: Image classification
 - Input: image
 - Output: class of the input image
- Train and test the implemented network on a dataset of your choice
- Note: don't load a pretrained model!

Labwork 6: Neural Network

- Write a report (in LAT_EX):
 - Name it « Report.6.CNN.tex »
 - How you design and implement the network architecture
 - Evaluation of the network using classification metrics
 - Accuracy
 - Precision
 - Recall
 - F1-score
 - Extra: comparison with ResNet19 if you are fast enough :)
- Push your code and report to your forked repository