Introduction to Deep Learning

Review of Linear Regression

Example

- Problem: House selling price prediction
- Input: Having data about areas and selling prices of 30 houses as in table 1 below:

Area (m2)	Selling price (Vnese million)	
30	448.524	
32.4138	509.248	
34.8276	535.104	
37.2414	551.432	
39.6552	623.418	

Table 1: Dataset for house selling price prediction

Visualization of table 1 data

Example (next)

 Requirement: estimate the selling price of a 50 square meter

• Output: estimated price?

Solution: Idea

Solution: Draw a line closest to the data points and calculate the house price at 50

price m2

Estimated price of 50-m2 house

Solution: Programming

Step 1- Training: Find the line closest to the data points (called *model*)

Solution: Programming

Step 1- Training: Find the line closest to the data points (called *model*) → using *Gradient descent algorithm*

Solution: Programming

Step 1- Training: Find the line closest to the data points (called *model*) → using *Gradient descent algorithm*

 Step 2 - Prediction: Predict how much a 50-m2 house will cost based on the trained model

Formulating model

• Model formula: $y = w_1 * x + w_0$

Formulating model

• Model formula: $y = w_1 * x + w_0$

 \rightarrow Linear Model

Formulating model

- Model formula: $y = w_1 * x + w_0$ \rightarrow Linear Model
- Problem becomes: find w_1, w_0
- Represent input data points as:

{(x_i,y_i), i = 1...30}
In which: y_i =
$$w_1 * x_i + w_0$$

• Represent estimated data point as:

$$\widehat{y}_i = w_1 * xi + w_0$$

Model training

- Random initial data point: $w_1 = 1$, $w_0 = 0 \rightarrow Model$ becomes: y = x
- Model fine-tuning

Difference between true price and estimated price at the data point x = 42 of linear model y = x

Model training

• Problem: estimated price is too far from true price. For example, at the point x = 42

Difference between true price and estimated price at the data point x = 42 of linear model y = x

Model training

 Need a metric to evaluate the linear model with parameter set: (w₀,w₁) = (0,1)

> Difference between true price and estimated price at the data point x = 42 of linear model y = x

Loss Function

 For each data point (x_i,y_i), the difference between the actual price and the predicted price:

$$\frac{1}{2} * (\widehat{y}_i - y_i)^2$$

• The difference across the entire data set as the sum of the differences of each data point:

$$J = \frac{1}{2} * \frac{1}{N} * (\sum_{i=1}^{N} (\widehat{y}_i - y_i)^2)$$

Where N is number of data points

Loss Function

$$J = \frac{1}{2} * \frac{1}{N} * (\sum_{i=1}^{N} (\widehat{y}_i - y_i)^2)$$

- J >= 0
- The smaller J is, the model is more close to the actual data points
- If J = 0 then the model passes through all data points

\rightarrow J is called the loss function

Loss Function

$$J = \frac{1}{2} * \frac{1}{N} * (\sum_{i=1}^{N} (\widehat{y}_i - y_i)^2)$$

- The problem transfers from: finding the linear model y = w₁ * x + w₀ cloest to the data points
- → to: finding the parameter (w₀,w₁) such that
 J obtains the minimum value

→ Use *Gradient descent* algorithm to find minimum value of J

Gradient Descent Algorithm

- Idea: use derivative to find the minimum value of a function f(x)
- Algorithm:
- (1) Random initialization: $x = x_0$
- (2) Assign: x = x learning_rate * f'(x)

(3) Re-compute f(x). Stop if f(x) is small enough, or repeat step (2) if not

Gradient Descent Algorithm

Note:

- learning_rate is non-negative constant
- step 2 will be repeated until a large enough number of times or f(x) is small enough

Problem: Find minimum value of $f(x) = x^2$ using gradient descent algorithm

Problem: Find minimum value of $f(x) = x^2$ using gradient descent algorithm

- Solution 1: use Linear Algebra
- Solution 2: use gradient descent algorithm

Step 1: Random initialization x = -2 (Point A) Step 2: compute f'(x) then $x = x_A - \text{learning}_\text{rate} * f'(x_A)$ Step 3: compute f(x) \rightarrow still big \rightarrow move to point C, and repeat Step 2

In detail: if we choose initial value: x = 10, learning_rate = 0.1, then the values of step 2 and step 3 will be as in the following table:

Time	x	f(x)
1	8.00	64.00
2	6.40	40.96
3	5.12	26.21
4	4.10	16.78
5	3.28	10.74
6	2.62	6.87
7	2.10	4.40
8	1.68	2.81
9	1.34	1.80
5	1.54	1.80
10	1.07	1.15

Table 2: values of f(x) after 10 times of step 2 calculation

Visualization of Table 2

Effect of Learning Rate Selection

Effect of Learning Rate Selection

Epoch: Number of times of step 2, Loss: the function to find the minimum value

Practical Work 01

- Setup python environment
 - Anaconda
 - Or virtualenv
 - ...
- Write Python code to plot data on previous table

Practical Work 01

