
Objects	and	Classes

Object-Oriented	Programming



Contents

• Classes	vs.	Objects
• Designing	a	Class
• Methods	and	Instance	Variables
• Encapsulation	and	Information	Hiding

2



3

Important	OO	Concepts
• Object	&	Class

– Object	state	and	behavior
– Object	identity
– Messages	

• Encapsulation
– Information	hiding

• Inheritance
• Polymorphism
• Abstraction

abstraction

encapsulation

inheritance polymorphism

"P.I.E“ 
triangle



4

Java	Program

• A	Java	program, when	we	write	it,	is	a	collection	of	
classes

• A	Java	program,	when	we	run	it,	is	a	collection	of	
objects.	They	do	things	(their	methods)	and	ask	other	
objects	to	do	things	(calling	methods	of	others)

• A	Java	library	contains	predefined	classes	that	we	can	
use	in	our	programs

public class Greeting {
public void greet() {
System.out.print("Hi there!");

}
}

public class TestGreeting {
public static void main(String[] args) {
Greeting gr = new Greeting();
gr.greet();

}
}



Objects
• Object	is	a	“thing”	that	includes	both	data	(properties/	

attributes) and	functions (methods/behaviors).	In	OOP,	
objects		can	either	do	something	or	have	something	
done	to	them

5

I	can	moo I	am	going	for	a	walk

Jenny Ben



6

Objects

• Objects	in	OOP	have	3	essential	features:
–State:	what	objects	have
–Behavior:	what	objects	do	in	response	to	
messages

– Identity:	what	makes	objects	unique



7

Object	State
• Defined	by	the	attributesof	the	object	and	by	
the	values of	these	attributes	

• Changes	over	time
• “Name”	attribute does	not	change	over	time
• “Age”	attribute	changes	over	time

Dave
Age: 32
Height: 1m80

Peter
Age: 35
Height: 1m75



8

Object Behavior
• Behavior	is	what	the	object	do	in	responding	
to	a	message

Water the tree
Cook dinner
Be human



9

Object	Identity
• Identity	is	what	to	make	the	object	unique

– Defined	by	object	address	or	object	ID	
• Used	to	distinguish	between	objects

Okay,	 so	who	is	the	
real	superman?

I	am	the	real	
superman

I	am	the	real	
superman

I	am	the	real	
superman

I	am	the	real	
superman

No	I	am	the	real	
superman



10

Classes
• A	class	is	a	blueprint/template that	is	used	to	
construct	objects



11

Classes	vs.	Objects
• Each	object	has	the	same	structureand	behavior
as	the	class	from	which	it	was	created

Person
Data
• name
• age
• height
Methods
• exercise()

Dave
Age:	32
Height:	1m80



12

Classes	vs.	Objects
• Each	object	is	instantiated from	a	class.	That	
object	is	called	an	instanceof	the	class

instantiate

Person
Data
• name
• age
• height
Methods
• exercise()

Class	Person
Dave
Age:	32
Height:	1m80

Peter
Age:	36
Height:	1m75

Object	1	

Object	2



13

Classes	vs.	Objects
• In	programming,	relation	between	“Class	and	Object”	
is	similar	to	relation	between	“Data	Type	and	Variable”

class Dog {

int size;
String breed;
String name;

void bark() {
System.out.println("Ruff!");
}

}

class Person {
String name;
Date birthday;
String address;

Dog petDog;
}



14

Designing	a	Class
• When	you	design	a	class,	think	about	the	objects	
that	will	be	created	from	that	class
– things	the	object	knows about	itself
– actions	the	object	does



15

Designing	a	Class

• Things	the	object	knows	about	itself
à instance	variables
àrepresent	object	state

• Actions	the	object	does
àmethods
à represent	object	behavior



16

Writing	a	Class
1.	Write	the	class

class Dog {

int size;
String breed;
String name;

void bark() {
System.out.println("Ruff! Ruff!");

}
}

DOG
size
breed
name

bark()

instance 
variables

a method



17

Writing	a	Class
2.	Write	a	tester	class

public class DogTestDrive {
public static void main(String [] args) {
Dog d = new Dog();
d.name = "Bruno";
d.bark();

}
}

make a Dog object

set the name of the Dog

call its bark() method

dot notation 
(.) gives 

access to 
instance 

variables and 
methods of 
the object



18

Writing	a	Class
• Instance	variables/methods	belong	to	an	object.	
Thus,	when	accessing	them,	you	MUST	specify	
which	object	they	belong	to

public class DogTestDrive {
public static void main(String [] args) {
Dog d = new Dog();
d.name = "Bruno";
d.bark();

}
}

access ‘name’ of the Dog

call its bark() method

dot notation 
(.) and the

object 
reference



19

Object	Reference

• 3	steps	to	declare,	create	&	assign	an	object:
1.	Declare	a	reference	variable

Dog	myDog=	new	Dog();
2.	Create	an	object

Dog	myDog =	new	Dog();
3.	Link	the	object	and	the	reference

Dog	myDog = new	Dog();



Object	Reference

Dog	myDog =	new	Dog();

Note:	Reference	is	not	object!



21

Messaging	between	Objects

• Sending	a	message	to	an	object	is	actually	
calling	a	method	of	the	object

d.bark()
• Syntax:

<object_reference>.<method_name>(<arguments>)

recipient message content extra information



22

Methods	– How	objects	behave

• Objects	have
§ state	(instance	variables)
§ behavior	(methods)

• A	method	can	use/change	value	of	instance	variables	
à state	of	the	object	can	be	changed



23

State	affects	behavior	and	vice	versa
class Dog {

int size;
String breed;
String name;

void bark() {
if (size > 14)
System.out.println("Ruff! Ruff!");

else
System.out.println("Yip! Yip!");

}

void getBigger() {
size += 5;

}
}

DOG
size
breed
name

bark()
getBigger()

State affects behavior:

Dogs of different sizes 
behave differently

method changes state



24

State	affects	behavior	and	vice	versa
class DogTestDrive {

public static void main (String[] args) {

Dog one = new Dog();
one.size = 7;
Dog two = new Dog();
two.size = 13;

two.bark();
two.getBigger();
two.bark () ;

one.bark();
}

}



25

State	affects	behavior	and	vice	versa
class DogTestDrive {

public static void main (String[] args) {

Dog one = new Dog();
one.size = 7;
Dog two = new Dog();
two.size = 13;

two.bark();
two.getBigger();
two.bark () ;

one.bark();
}

}

name:null
size:0 
breed:null

Dog object 1

one

%> java DogTestDrive



26

State	affects	behavior	and	vice	versa
class DogTestDrive {

public static void main (String[] args) {

Dog one = new Dog();
one.size = 7;
Dog two = new Dog();
two.size = 13;

two.bark();
two.getBigger();
two.bark () ;

one.bark();
}

}

name:null
size:7
breed:null

Dog object 1

one

%> java DogTestDrive



27

State	affects	behavior	and	vice	versa
class DogTestDrive {

public static void main (String[] args) {

Dog one = new Dog();
one.size = 7;
Dog two = new Dog();
two.size = 13;

two.bark();
two.getBigger();
two.bark () ;

one.bark();
}

}

name:null
size:7 
breed:null

Dog object 1

one

%> java DogTestDrive

name:null
size:13
breed:null

Dog object 2

two



28

State	affects	behavior	and	vice	versa
class DogTestDrive {

public static void main (String[] args) {

Dog one = new Dog();
one.size = 7;
Dog two = new Dog();
two.size = 13;

two.bark();
two.getBigger();
two.bark () ;

one.bark();
}

}

name:null
size:7 
breed:null

Dog object 1

one

name:null
size:13
breed:null

Dog object 2

two

%> java DogTestDrive

Yip! Yip!



29

State	affects	behavior	and	vice	versa
class DogTestDrive {

public static void main (String[] args) {

Dog one = new Dog();
one.size = 7;
Dog two = new Dog();
two.size = 13;

two.bark();
two.getBigger();
two.bark () ;

one.bark();
}

}

name:null
size:7 
breed:null

Dog object 1

one

name:null
size:18
breed:null

Dog object 2

two

%> java DogTestDrive

Yip! Yip!



30

State	affects	behavior	and	vice	versa
class DogTestDrive {

public static void main (String[] args) {

Dog one = new Dog();
one.size = 7;
Dog two = new Dog();
two.size = 13;

two.bark();
two.getBigger();
two.bark () ;

one.bark();
}

}

name:null
size:7 
breed:null

Dog object 1

one

name:null
size:18
breed:null

Dog object 2

two

%> java DogTestDrive

Yip! Yip!

Ruff! Ruff!



31

State	affects	behavior	and	vice	versa
class DogTestDrive {

public static void main (String[] args) {

Dog one = new Dog();
one.size = 7;
Dog two = new Dog();
two.size = 13;

two.bark();
two.getBigger();
two.bark () ;

one.bark();
}

}

name:null
size:7 
breed:null

Dog object 1

one

name:null
size:18
breed:null

Dog object 2

two

%> java DogTestDrive

Yip! Yip!

Ruff! Ruff!

Yip! Yip!

%>



32

Instance	Variables	vs.	Local	Variables
Instance	variables
§ belong	to	an	object
§ declared	inside	a	class	but	

NOT	within	a	method
§ have	default	values	(0,	

0.0,	false,	null,	etc.)
class Dog {

int size;
String name;
…
void getBigger() {

size += 5;
}

}

Local	variables
§ belong	to	an	method
§ declared	within	a	method
§ MUST	be	initialized	before	

use

public class DogTestDrive {
public static void main(String 
[] args) {
Dog d= new Dog();
d.name = "Bruno";
…
int size = d.size;

}
}



33

Encapsulation
• Group	related	things	together

– Functions	encapsulate	instructions
– Objects	encapsulate	data	and	functions

class Person {
String name;
Date birthday;
String address;

// about his/her dog
String dogName;
String dogBreed;
int dogSize; 

}

class Dog {
int size;
String breed;
String name;
...

}

class Person {
String name;
Date birthday;
String address;

Dog petDog;
}

q Bad q Better



34

Information	hiding
• Encapsulate	to	hide	internal	implementation	
details from	outsiders:
– Outsiders	see	only	interfaces	
– Programmers	implement details	of	the	system



35

Information	hiding
• What’s	wrong	with	this	code?

– It	allows	for	a	supernatural	dog
à no	verification	of	size

– Object's	data	is	exposed
à size	is	accessed	directly	from	outsider

• Exposed	instance	variables	can	lead	to	invalid	states	of	object
• What	to	do	about	it?	

– Write	set	methods	(setters)	for	instance	variables
– Force	other	codes	to	use	the	set	methods	instead	of	
accessing	them	directly

class Dog {
int size;
String breed;
String name;
...

} Dog d = new Dog();
d.size = -1;



36

Information	hiding:	Rule	of	thumb
• Mark	instance	variables	private
• Make	getters	and	setters	and	mark	them	public

class Dog {
private int size;

public void setSize(int s) {
if (s > 0) size = s;

}

public int getSize() {
return size;

}
...

• Don’t	forget	to	check	
data	validity in	setters



37

Example	of	Encapsulation
public class Person {

private String name;
private int age;

public int getAge() {      
return age;   

}   
public String getName() {      

return name;   
}

public void setAge( int newAge) {      
age = newAge;   

}   
public void setName(String newName) {      

name = newName;   
}

}

mark instance variables private

make getters and 
mark them public

make setters and 
mark them public



38

Example	of	Encapsulation
public class PersonTest {

public static void main(String args[]) {      
Person p = new Person();

p.setName(“James”);
p.setAge(20);

System.out.println(“Name: ” + p.getName());
System.out.println(“Age: ” + p.getAge());

}
}

Set attribute values 
from outsider

Retrieve attribute values 
from outsider



39

Class	Access	Control
Access	modifiers:
• public:	accessible	anywhere	by	anyone
• private:	only	accessible	within	the	current	
class

• protected:	accessible	only	to	the	class	itself	
and	to	its	subclasses	or	other	classes	in	the	
same	package

• default	(no	keyword):	accessible	within	the	
current	package



40

Implementation	vs.	Interface
• DogTestDrive:	a	“client”	of	Dog	class
• Implementation

– Data	structures	and	code	that	implement	object	
features

– Usually	have	complex	inner	workings
– Clients	don’t	need	to	know

• Interface
– The	controls	exposed	to	the	“client”

• “Don’t	expose	internal	data	structure	to	end	users	or	
client	modules”



41


