
Thread Model Memory

Thread and Memory Model

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 1 / 52



Thread Model Memory

Thread Model

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 2 / 52



Thread Model Memory

Thread

• What? a single sequential of execution

• SIMT on GPU
• Same instruction

• Same time

• Different data

• Natural for graphics and scientific computing

• A way to simplify core

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 3 / 52



Thread Model Memory

Thread

. . .

. . .

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 4 / 52



Thread Model Memory

Thread: Software View

• Thread: a single flow of kernel execution

• Block: a bunch of thread (1D, 2D, 3D)
• blockDim.x, blockDim.y, blockDim.z

• Grid: a bunch of block (1D, 2D, 3D)
• gridDim.x, gridDim.y, gridDim.z

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 52



Thread Model Memory

Thread: Restrictions

• Dimensions is fixed after kernel launch

• All blocks in a grid have the same dimension

• Block size and grid size are upper bounded

Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 52



Thread Model Memory

Thread: Restrictions

• Dimensions is fixed after kernel launch

• All blocks in a grid have the same dimension

• Block size and grid size are upper bounded
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 52



Thread Model Memory

Thread: Software View

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 3 4 5 6 7

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 3126

Global Thread ID

blockSize = 8

int globalThreadId = threadIdx.x + blockIdx.x * blockDim.x

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 7 / 52



Thread Model Memory

Thread: Software View

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 8 / 52



Thread Model Memory

Thread: Software View

• Where are we?
• 1D: x = threadIdx.x + blockIdx.x * blockDim.x

• 2D: y = threadIdx.y + blockIdx.y * blockDim.y

• 3D: z = threadIdx.z + blockIdx.z * blockDim.z

• How about gridDim?
• Number of blocks in each dimension in the grid

• Use case: 1D grid for a 2D image
• Length of a row: w = blockDim.x * gridDim.x

• Next row: x += w

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 52



Thread Model Memory

Thread: Software View

• Where are we?
• 1D: x = threadIdx.x + blockIdx.x * blockDim.x

• 2D: y = threadIdx.y + blockIdx.y * blockDim.y

• 3D: z = threadIdx.z + blockIdx.z * blockDim.z

• How about gridDim?
• Number of blocks in each dimension in the grid

• Use case: 1D grid for a 2D image
• Length of a row: w = blockDim.x * gridDim.x

• Next row: x += w

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 52



Thread Model Memory

Thread: Hardware View

• Streaming Processor (CUDA cores)

• Streaming Multiprocessor : A bunch of Streaming
Processors plus some extra Special Function Units
(sine/cosine/. . . )

• Graphics Processing Cluster : A bunch of Streaming
Multiprocessors

• Many simple cores ⇒ better performance

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 10 / 52



Thread Model Memory

Thread: Hardware View

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 11 / 52



Thread Model Memory

Thread: Hardware View

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 12 / 52



Thread Model Memory

Thread: Assignment

• Each SM has “multiple of 32” cores

• Threads in SM execute in group of 32 threads
• A group of 32 thread inside a SM is called « Warp »

• Warp is unit of thread scheduling in SMs

• Blocks are assigned to SMs into multiple of warps
• Number of blocks per SM is constrained

• No specific mapping between thread and core

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 52



Thread Model Memory

Thread: Assignment

• Each SM has “multiple of 32” cores

• Threads in SM execute in group of 32 threads
• A group of 32 thread inside a SM is called « Warp »

• Warp is unit of thread scheduling in SMs

• Blocks are assigned to SMs into multiple of warps
• Number of blocks per SM is constrained

• No specific mapping between thread and core

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 52



Thread Model Memory

Thread: Assignment

• Each SM has “multiple of 32” cores

• Threads in SM execute in group of 32 threads
• A group of 32 thread inside a SM is called « Warp »

• Warp is unit of thread scheduling in SMs

• Blocks are assigned to SMs into multiple of warps
• Number of blocks per SM is constrained

• No specific mapping between thread and core

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 52



Thread Model Memory

Thread: Assignment

• Each SM has “multiple of 32” cores

• Threads in SM execute in group of 32 threads
• A group of 32 thread inside a SM is called « Warp »

• Warp is unit of thread scheduling in SMs

• Blocks are assigned to SMs into multiple of warps
• Number of blocks per SM is constrained

• No specific mapping between thread and core

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 52



Thread Model Memory

Thread: Assignment

• Each warp is executed in SIMD
• All threads must execute same instruction at any time

• Fact
• Not all warps are scheduled at anytime

• Wait for data

• Branch divergence

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 14 / 52



Thread Model Memory

Thread: Assignment

• CUDA virtualizes the physical hardware
• Thread : virtualized scalar processor

• registers

• PC

• state

• Block is a virtualized multiprocessor
• threads

• shared memory

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 15 / 52



Thread Model Memory

Thread: Branch divergence

Branch

Path A

Path B

Branch

Path A

Path B

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 16 / 52



Thread Model Memory

Thread: Branch divergence

• When?
• Condition

• Divergence

if threadIdx.x > 2:

• No divergence

if threadIdx.x / WARP_SIZE > 2:

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 17 / 52



Thread Model Memory

Thread: Latency Tolerance

• When a warp does something with high latency
• Pause it

• Schedule next warp

• No context switch
• Large register file

• No need to “switch” register content to memory

• Zero overhead

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 18 / 52



Thread Model Memory

Thread: Latency Tolerance

warp 8 instruction 11

Instruction scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

.

time

warp 3 instruction 96

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 19 / 52



Thread Model Memory

Thread: Latency Tolerance

• Latency tolerance relies on many warps

• Branch divergence does not affect GPU high throughput like
CPU

• CPU focuses on low latency
• Branch is important

• Branch prediction is even more important

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 20 / 52



Thread Model Memory

Block size in CUDA

• Previously, in launching kernel

kernelName[gridSize, blockSize](args...)

• Example

pixelCount = imageWidth * imageHeight
blockSize = 64
gridSize = pixelCount / blockSize
grayscale[gridSize, blockSize](devInput, devOutput)

• This is 1D kernel launch
• numBlock is essentially gridDim.x

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 21 / 52



Thread Model Memory

Block size in CUDA

• For 2D kernel launches
• Grid size and block size are 2-dimensional tuples

• Launch a kernel with of 8 × 8 blocks, each block has 32 × 32
threads

gridSize = (8, 8)
blockSize = (32, 32)
grayscale[gridSize, blockSize](devInput, devOutput)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 22 / 52



Thread Model Memory

Labwork & Exercises 4: Threads
• Copy labwork 3 code to labwork 4

• Improve labwork 4 code to use 2D blocks

• Use time.time() to measure speedup

• Write a report (in LATEX)
• Name it « Report.4.threads.tex »

• Explain how you improve the labwork

• Try experimenting with different 2D block size values

• Plot a graph of block size vs speedup

• Compare speedup with previous 1D grid

• Answer the questions in the upcoming slides, explain why

• Push the report and your code to your forked repository
Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 52



Thread Model Memory

Thread: Exercises 1

Consider a GPU having the following specs (maximum numbers):

• 512 threads/block

• 1024 threads/SM

• 8 blocks/SM

• 32 threads/warp

What is the best configuration for thread blocks to implement
grayscaling?

• 8 × 8

• 16 × 16

• 32 × 32

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 24 / 52



Thread Model Memory

Thread: Exercises 2

Consider a device SM that can take max

• 1,536 threads

• 4 blocks

Which of the following block configs would result in the most
number of threads in the SM?

• 128 threads/blk

• 256 threads/blk

• 512 threads/blk

• 1,024 threads/blk

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 25 / 52



Thread Model Memory

Thread: Exercises 3

Consider a vector addition problem

• Vector length is 2,000

• Each thread produces one output

• Block size 512 threads.

How many threads will be in the grid?

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 26 / 52



Thread Model Memory

Memory

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 27 / 52



Thread Model Memory

Memory

• Example of a kernel doing vector addition

def add(out, in1, in2):
tid = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x
out[tid] = in1[tid] + in2[tid]

• GTX 1080: 352 GB/s global memory bandwidth

• Single precision float : 4 bytes

• Max 88 giga single precision float loaded from/to global
memory per sec

• If no cache: 2 in, 1 out per FLOP ⇒ max 29.3 GFLOPS

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 52



Thread Model Memory

Memory

• Example of a kernel doing vector addition

def add(out, in1, in2):
tid = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x
out[tid] = in1[tid] + in2[tid]

• GTX 1080: 352 GB/s global memory bandwidth

• Single precision float : 4 bytes

• Max 88 giga single precision float loaded from/to global
memory per sec

• If no cache: 2 in, 1 out per FLOP ⇒ max 29.3 GFLOPS

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 52



Thread Model Memory

Memory

• Example of a kernel doing vector addition

def add(out, in1, in2):
tid = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x
out[tid] = in1[tid] + in2[tid]

• GTX 1080: 352 GB/s global memory bandwidth

• Single precision float : 4 bytes

• Max 88 giga single precision float loaded from/to global
memory per sec

• If no cache: 2 in, 1 out per FLOP ⇒ max 29.3 GFLOPS

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 52



Thread Model Memory

Memory

• Example of a kernel doing vector addition

def add(out, in1, in2):
tid = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x
out[tid] = in1[tid] + in2[tid]

• GTX 1080: 352 GB/s global memory bandwidth

• Single precision float : 4 bytes

• Max 88 giga single precision float loaded from/to global
memory per sec

• If no cache: 2 in, 1 out per FLOP ⇒ max 29.3 GFLOPS

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 52



Thread Model Memory

Memory

• Example of a kernel doing vector addition

def add(out, in1, in2):
tid = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x
out[tid] = in1[tid] + in2[tid]

• GTX 1080: 352 GB/s global memory bandwidth

• Single precision float : 4 bytes

• Max 88 giga single precision float loaded from/to global
memory per sec

• If no cache: 2 in, 1 out per FLOP ⇒ max 29.3 GFLOPS

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 52



Thread Model Memory

Memory

Something’s wrong.

FeedbackAbout this result

GeForce 10 (10xx) series

Model Launch
Processing power (GFLOPS)

Single precision (Boost)

GeForce GTX 1080 May 27, 2016 8228 (8873)

GeForce GTX 1080 Ti March 10, 2017 10609 (11340)

NVIDIA TITAN X August 2, 2016 10157 (10974)

8 more rows

GeForce 10 series - Wikipedia
https://en.wikipedia.org/wiki/GeForce_10_series

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 29 / 52



Thread Model Memory

Memory

• Key challenge
• Fast computation but slow memory?

• Lots of memory

• Fast + Lots == Expensive

• Hierarchical design

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 30 / 52



Thread Model Memory

Memory Hierarchical Design: Host
Core 0 Registers

L1 Instruction
32KB

L2: 256KB

L3: 6-8MB

L1 Data
32KB

Core 1 Registers

L1 Instruction
32KB

L2: 256KB

L1 Data
32KB

Core 2 Registers

L1 Instruction
32KB

L2: 256KB

L1 Data
32KB

Core 3 Registers

L1 Instruction
32KB

L2: 256KB

L1 Data
32KB

L4: 128MB (Optional, depending on CPU)

Main Memory

Large
Laaaarge

LAAAAAAAAAAAARGE

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 31 / 52



Thread Model Memory

Memory Hierarchical Design: Device

Grid

Block (0, 0)

Shared memory

Thread 
(0, 0)

Regs Regs

Block (1, 0)

Shared memory

Thread
 (0, 0)

Regs

Thread
 (1, 0)

Regs

Global memory

Thread 
(1, 0)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 32 / 52



Thread Model Memory

Memory Hierarchical Design: Device

Registers
• Fastest
• On-chip only
• No off-chip bandwidth
• Only accessible by a thread
• Lifetime of a thread

Grid

Block (0, 0)

Shared memory

Thread 
(0, 0)

Regs Regs

Block (1, 0)

Shared memory

Thread
 (0, 0)

Regs

Thread
 (1, 0)

Regs

Global memory

Thread 
(1, 0)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 33 / 52



Thread Model Memory

Memory Hierarchical Design: Device

Shared Memory
• Extremely fast
• Highly parallel
• Restricted to a block

Grid

Block (0, 0)

Shared memory

Thread 
(0, 0)

Regs Regs

Block (1, 0)

Shared memory

Thread
 (0, 0)

Regs

Thread
 (1, 0)

Regs

Global memory

Thread 
(1, 0)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 34 / 52



Thread Model Memory

Memory Hierarchical Design: Device

Global Memory
• Typically implemented in

DRAM
• High access latency:

400-800 cycles
• Finite access bandwidth
• Potential of traffic

congestion
• Throughput up to 900GB/s

(Volta V100 on HBM2)

Grid

Block (0, 0)

Shared memory

Thread 
(0, 0)

Regs Regs

Block (1, 0)

Shared memory

Thread
 (0, 0)

Regs

Thread
 (1, 0)

Regs

Global memory

Thread 
(1, 0)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 35 / 52



Thread Model Memory

Memory Hierarchical Design: Device

Constant Memory
• Small : 64KB/block
• Read only from device
• Writable from host
• Short latency and high

bandwidth
• If warps accesses the

same location

Grid

Block (0, 0)

Shared memory

Thread 
(0, 0)

Regs Regs

Block (1, 0)

Shared memory

Thread
 (0, 0)

Regs

Thread
 (1, 0)

Regs

Global memory

Thread 
(1, 0)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 36 / 52



Thread Model Memory

Memory Hierarchical Design: Device

Memory Scope Lifetime Latency

register thread thread 1x
local thread thread 100x
shared blocks thread 1x
global grid app 100x
constant grid app 1x

Note: “local” memory is in fact a part of the global memory.

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 37 / 52



Thread Model Memory

Memory of GTX 1080

• GDDR5X
• 256-bit wide bus
• 352GB/s (ref: PCIEx3:

985MB/sec/lane)
• Unified 2MB L2 cache
• 1 GPC consists of 5 SMs,

each SM
• 4x 64KB registers
• 96KB shared memory
• 48KB L1 cache

• Memory compression
engine

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 38 / 52



Thread Model Memory

Maximizing Computation

Previously. . .

def add(out, in1, in2):
tid = threadIdx.x + blockIdx.x * blockDim.x
out[tid] = in1[tid] + in2[tid];

29.3 GFLOPS

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 39 / 52



Thread Model Memory

Maximizing Computation: Memory Architecture

• Execution speed is based on data locality
• Temporal locality: just-accessed is likely to be accessed again

• Spatial locality: nearby data is likely to be used soon (image,
video, sound)

• Order of performance
• Registers

• Shared memory / Constant memory (temporal locality)

• Texture memory (spatial locality)

• Global memory

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 40 / 52



Thread Model Memory

Maximizing Computation: Memory Architecture

• YOU dictate:
• visibility

• access speed

• How?
• Access to registers need fewer instructions than global

memory

• Aggregate register files bandwidth ~ two orders of magnitude
that of the global memory

• Shared memory is part of the address space
• Requires load/store

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 41 / 52



Thread Model Memory

Maximizing Computation: Memory Architecture

• Global memory access is performance bottleneck
• Less global memory access, better perf

• Tiling partition the data into small chunks, fittable into
shared memory

• Can speed up with coalesced read/write

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 42 / 52



Thread Model Memory

Maximizing Computation: Memory Coalesce

• Memory access are in transactions
• A block of 32, 64, 128, 256 bytes

• Coalesced read/writes:
• Parallel read/writes from threads in a block

• Sequential memory locations. . .

• . . . with appropriate alignment

• Minimize global memory bandwidth requirement

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 43 / 52



Thread Model Memory

Maximizing Computation: Memory Alignment

• Addresses being powers-of-two bytes (4 to 16) are aligned

• Aligned addresses can be accessed with a single memory
instruction

• All other accesses are split in multiple instructions.

⇒ Better performance with aligned addresses

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 44 / 52



Thread Model Memory

Maximizing Computation: Coalesce and Alignment
• Structure of array vs Array of structure

AoS = [{
r: 10,
g: 20,
b: 30

}, {
r: 15,
g: 25,
b: 35

}]

SoA = {
r: [10, 15]
g: [20, 25],
b: [30, 35]

}Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 45 / 52



Thread Model Memory

Maximizing Computation: Coalesce and Alignment

• Array of Structs
• More readable: objects are kept together

• Better cache locality: members are accessed together
• Better coalesce

• e.g. RGB are used together in case of grayscaling

• Struct of Arrays
• Potentially more efficient in several cases

• e.g. processing one channel only

• Less paddings: only between array, not between struct

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 46 / 52



Thread Model Memory

Maximizing Computation

• Shared memory is fast, IF
• All threads in warp access the same location

• Or linear access

• Shared memory’s random access is slow
• Bank conflict

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 47 / 52



Thread Model Memory

Maximizing Computation
Thread local computation

• Where are we?

tid = threadIdx.x + blockIdx.x * blockDim.x

• Load data from global memory (coalesced)

r = inputImage[tid, 0]
g = inputImage[tid, 1]
b = inputImage[tid, 2]

• Do computation with registers

gray = np.uint8((r + g + b) / 3)

• Write back to global memory (coalesced)

inputImage[tid, 0] = gray

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 48 / 52



Thread Model Memory

Maximizing Computation
Block local computation

• Where are we? ...

• Load data to shared memory
tile = cuda.shared.array(

(cuda.blockDim.x, cuda.blockDim.y),
numba.uint8)

tidx = ...
tidy = ...
tile[cuda.threadIdx.x, cuda.threadIdx.y] = src[tidx, tidy, 0]

• Synchronize: wait all threads in the same block to reach this
point

cuda.synchronize()

• Calculate on shared memory

• Write back to global memory (coalesced)
Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 49 / 52



Thread Model Memory

Labwork 5: Gaussian Blur Convolution
• Copy your grayscaling kernel in labwork 4 to labwork 5

• Change it to 7x7 Gaussian blur convolution
• Without shared memory

• With shared memory (copy the filter into shared memory)

• Use time.time() to measure speedup

• Write a report (in LATEX)
• Name it « Report.5.gaussian.blur.tex »

• Explain how you implement the Gaussian Blur filter

• Try experimenting with different 2D block size values

• Plot a graph of block size vs speedup (with/without shared
memory)

• Push the report and your code to your forked repository

• For further speedup : Communication-minimizing 2D
convolution in GPU registers

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 50 / 52

http://ieeexplore.ieee.org/document/6738436/
http://ieeexplore.ieee.org/document/6738436/


Thread Model Memory

Extra: Gaussian Blur Convolution

• Convolution

• Mostly to blur the input image

• The 2D kernel follows a normal distribution

G(x, y) = 1
2πσ2 exp

[
−(x − µx)2 + (y − µy)2

2σ2

]
• σ : standard deviation of the distribution

• µx : Mean of the kernel in horizontal axis

• µy : Mean of the kernel in vertical axis

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 51 / 52



Thread Model Memory

Extra: Gaussian Blur Convolution

• Example 7 x 7 (1003 total)

0 0 1 2 1 0 0
0 3 13 22 13 3 0
1 13 59 97 59 13 1
2 22 97 159 97 22 2
1 13 59 97 59 13 1
0 3 13 22 13 3 0
0 0 1 2 1 0 0

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 52 / 52


	Thread Model
	Memory

