
CodeIgniter

Web Application Development

Application Framework

2

MVC Pattern

• The Model represents your data structure. Typically
your model classes will contain functions that help
you retrieve, insert, and update information in your
database

• The View is the information that is being presented
to a user. A View will normally be a web page, but in
CodeIgniter, a view can also be a page fragment like
a header or footer. It can also be an RSS page, or
any other type of “page"

• The Controller serves as an intermediary between
the Model, the View, and any other resources
needed to process the HTTP request and generate a
web page

3

MVC Pattern

4

Controller

View Model

What is CodeIgniter

• CodeIgniter is a lightweight and open
source PHP application framework for
developing websites

• CodeIgniter is based on MVC development
pattern for separating application logic
from presentation. CodeIgniter allows to
separate PHP scripting from your webpage

• CodeIgniter is widely used for easy
development of websites nowadays

5

Installing CodeIgniter

• Step 1: Download CodeIgniter Framework
http://www.codeigniter.com

Unzip and change (if necessary) the
“CodeIgniter” folder to the “application
name”
• Step 2: Copy CodeIgniter folder to PHP

and MySQL enabled server. For example,
copy it to the directory: C:/xampp/htdocs

6

Configuring CodeIgniter

• Open application configuration file: “C:/
xampp/htdocs/CodeIgniter/application/
config/config.php”

• Edit the base_url to point to your PHP
server and CodeIgniter folder:

7

Testing CodeIgniter

8

Database Configuration
• Open database configuration file: “C:/xampp/htdocs/

CodeIgniter/application/config/database.php”
• Edit your database connection parameters:
• hostname: Indicate location of your database

(e.g. “127.0.0.1”)
• username: Set username of your database (e.g.

“root”)
• password: Set password of your database (e.g.

“abc123”)
• database: Set name of your database (e.g. “usth”)
• dbdriver: Set type of your database (e.g. MySQL,

MySQLi, Postgre SQL, MS SQL, etc.)

9

Database Configuration

10

Basic Concepts

• Controllers
• Views
• Models

11

Controllers

• A controller is a class file that is named in a
way that can be associated with a URI

example.com/index.php/blog/
• CodeIgniter would attempt to find a

controller named Blog.php and load it

12

Controllers

13

Passing Parameters

14

Check out: http://…/blog/comment/ICT5Class

Passing Parameters

15

Check out: http://…/blog/comment/Hello/World

Private Function

 A private function is a function not accessible
via Web browsers

16

<?php
class Blog extends CI_Controller {

 function _utility(){
 return '1';

 }
}
?>

Private Function

17

Folders for Controllers

• We may have folders for controller inside
application/controllers/

• The URIs must include sub-folders
http://localhost/CodeIgniter/index.php/
test/Blog

18

Constructors

19

<?php  
class Blog extends CI_Controller {  
 function __construct()  
 {  
 parent::__construct();  
 // Your own constructor code
 $this->load->helper('url');
 $this->load->database();  
 }  
}  
?>

Views

• A view can be a web page, or a page
fragment, like a header, footer, sidebar,
etc.

• Views are never called directly, they must
be loaded by a controller

20

Controller-View

21

<html>
<head>
<title>My Blog</title>
</head>
<body>
 <h1>Welcome to my Blog!</h1>
</body>
</html>

application/views/blog_view

<?php
class Blog extends CI_Controller {

 function index()
 {
 $this->load->view(‘blog_view');
 }
}
?>

application/controllers/Blog.php

Loading Multiple Views

22

<?php  
 
class Blog extends CI_Controller {  
 function index()  
 {  
 $this->load->view('blog_view1'); 
 $this->load->view('blog_view2'); 
 $this->load->view('blog_view3');
 }  
}

?>

Adding Dynamic Data to the View

23

<?php  
class Blog extends CI_Controller {  
 
 function index()  
 {  
 $data['str'] = 'Testing Dynamic View';  
 $this->load->view('blog_view', $data);  
 }  
}
?>

<html>
<head>
<title>Blog</title>
</head>
<body>
 <h1>Welcome to my Blog!</h1>

<?php echo $str?>
</body>
</html>

Adding Dynamic Data to the View

24

<?php
class Blog extends CI_Controller {
 function index()
 {

 $data['todo_list'] = array('Clean House', 'Call Mom', ‘Play Game');
 $data['heading'] = "My Real Heading";

 $this->load->view(‘blog_view’, $data);
 }
}
?>

<body>
<h1><?php echo $heading;?></h1>
<h3>My Todo List</h3>

 <?php foreach ($todo_list as $item):?>
 <?php echo $item;?>
 <?php endforeach;?>

</body>

Folders for Views

• We may have folders for views inside
application/views/

• If your view is located in a sub-directory,
include the relative path from your view
directory

$this->load->view('folder_name/file_name');

25

Models

• Models are PHP classes that are designed
to work with information in your database

• Example: You might have a model class
that contains functions to insert, update,
and retrieve your blog data

26

Models

27

Loading a Model

• Load a model with model_name via a
controller, then use model name to call
model methods

$this->load->model('Model_name');
$this->Model_name->function();

• Assign model to a different object name via
second parameter of the loading method

$this->load->model(‘Model_name’,’object_name’);
$this->Object_name->function();

28

Manipulating Database

29

Performing Insert SQL Query

Manipulating Database

30

Performing Select SQL Query

Manipulate Database

31

blog_view.php

32

