
Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 1 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

A distributed system is one in which the failure of a
computer you didn’t even know existed can render your
own computer unusable

- Leslie Lamport, 1987

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 2 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed Architecture

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 3 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Centralized Computing
• One big, fast guy

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 4 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed Systems

• Hardware and software of a collection of independent
computers

• Cooperate to implement some functionality

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed Systems

• Abstraction of distribution
• Storage

• Communication

• Computation

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed Systems : Examples

• Multi-tier web apps: Facebook, Twitter. . .

• Cloud-based systems: GCP, Azure, EC2, Drive, Flickr, . . .

• Scientific applications: SETI@Home, Folding@Home

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 7 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Parallel System?

• Multiprocessor systems
• Direct access to shared memory, UMA

• Interconnection network

• Multicomputer parallel systems
• No direct access to shared memory, NUMA

• Easier scalability

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 8 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Parallel System

M  memory

MP

PPP M MM

M M

PP

Interconnection network Interconnection network

(a) UMA (b) NUMA

P   processor

M M MP MP

P P

UMA vs NUMA

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Parallel System: ICTLab’s ICT2 NUMA example

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 10 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Parallel System: ICTLab’s ICT5 NUMA example

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 11 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Parallel System: Intel Coffee Lake

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 12 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Parallel System: Intel Coffee Lake 8700K

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Parallel System: Intel Coffee Lake 8700K

L3$ Slice

L3$ Slice

L3$ Slice

L3$ Slice

System
Agent

Display
Controller

Memory
Controller

PCIe

eDRAM
Controller

(optional)

CoreCore

Core Core

Gen9.5
L3$ Slice

L3$ Slice

Core

Core

R
i n
g

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 14 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Parallel System: Intel Broadwell EP Xeons

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 15 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Parallel System: Intel Skylake SP Xeons

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 16 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Parallel System: AMD ThreadRipper
• Intra-Socket

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 17 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Parallel System: AMD Epyc

• Inter-Socket

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 18 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Why?

• Performance

• Scalability

• Reliability
• Availability, fault-tolerance

• Modularity

• Resource sharing

• Efficiency

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 19 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Why not?

• Communication

• Synchronization

• Fault-tolerance

• Security

• Scalability

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 20 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes

• The network is reliable

• Latency is zero

• Bandwidth is infinite

• The network is secure

• Topology doesn’t change

• There is one administrator

• The network is homogeneous

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 21 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Network

• Hardware failures: switch/router failure, cable failure, power
failure

• Solutions
• Hardware: redundancy

• Software: reliable messaging. Retries. Ordering. Integrity.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 22 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Latency

• Latency?

• Not bandwidth

• Time for data to move from one place to another (sec, ms)

• Limit: speed of light :
• 300,000 km/s

• Ping Hanoi to Washington DC?

• 13359 km

• 44.53ms

• 89ms roundtrip

⇒ Think about latency.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Latency

• Latency?
• Not bandwidth

• Time for data to move from one place to another (sec, ms)

• Limit: speed of light :
• 300,000 km/s

• Ping Hanoi to Washington DC?

• 13359 km

• 44.53ms

• 89ms roundtrip

⇒ Think about latency.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Latency

• Latency?
• Not bandwidth

• Time for data to move from one place to another (sec, ms)

• Limit: speed of light

:
• 300,000 km/s

• Ping Hanoi to Washington DC?

• 13359 km

• 44.53ms

• 89ms roundtrip

⇒ Think about latency.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Latency

• Latency?
• Not bandwidth

• Time for data to move from one place to another (sec, ms)

• Limit: speed of light :
• 300,000 km/s

• Ping Hanoi to Washington DC?

• 13359 km

• 44.53ms

• 89ms roundtrip

⇒ Think about latency.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Latency

• Latency?
• Not bandwidth

• Time for data to move from one place to another (sec, ms)

• Limit: speed of light :
• 300,000 km/s

• Ping Hanoi to Washington DC?

• 13359 km

• 44.53ms

• 89ms roundtrip

⇒ Think about latency.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Latency

• Latency?
• Not bandwidth

• Time for data to move from one place to another (sec, ms)

• Limit: speed of light :
• 300,000 km/s

• Ping Hanoi to Washington DC?

• 13359 km

• 44.53ms

• 89ms roundtrip

⇒ Think about latency.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Latency

• Latency?
• Not bandwidth

• Time for data to move from one place to another (sec, ms)

• Limit: speed of light :
• 300,000 km/s

• Ping Hanoi to Washington DC?

• 13359 km

• 44.53ms

• 89ms roundtrip

⇒ Think about latency.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Latency

• Latency?
• Not bandwidth

• Time for data to move from one place to another (sec, ms)

• Limit: speed of light :
• 300,000 km/s

• Ping Hanoi to Washington DC?

• 13359 km

• 44.53ms

• 89ms roundtrip

⇒ Think about latency.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Bandwidth

• Bandwidth: how much data can be transferred (bit/sec)

• Faster and faster

• Packet loss

⇒ Use compression, if possible

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 24 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Secured
Network

• Intermediate nodes between hosts

• Packet sniffing, eavesdropping on routers, switches

• Unsecured WiFi

⇒ Think about network security since day 1

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 25 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Topology

• Myth: the network topology doesn’t change

• Reality:
• Adding servers

• Laptops and phones connect to network day by day

• Topology changes

⇒ Do not rely on specific endpoints or routes ⇒ Use DNS.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 26 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Topology

• Myth: the network topology doesn’t change

• Reality:
• Adding servers

• Laptops and phones connect to network day by day

• Topology changes

⇒ Do not rely on specific endpoints or routes ⇒ Use DNS.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 26 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Topology

• Myth: the network topology doesn’t change

• Reality:
• Adding servers

• Laptops and phones connect to network day by day

• Topology changes

⇒ Do not rely on specific endpoints or routes ⇒ Use DNS.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 26 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Administrators

• ICTLab : 1 administator

• USTH : 2 administrators

• Netnam : N administrators

• FPT : M administrators

• Different degrees of expertise

• Difficult to locate problems

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 27 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Homogeneous
• Different types of machines

• ict1 : 6C12T / 24GB

• ict2 : 16C32T / 64GB

• ict3/4 : 6C12T / 32GB

• ict5/6 : 12C24T / 128GB

• ict7/8/9 : 8C16T / 24GB

• Different types of networks
• WiFi: a, b, g, abg, n, ac

• LAN: 10/100Mbps, 1Gbps

• Internet: Fiber 24Mbps, 48Mbps, Leased lines 80Mbps

• Different OSes
• Windows

• Linux

• macOS

⇒ Interoperability with standards.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Homogeneous
• Different types of machines

• ict1 : 6C12T / 24GB

• ict2 : 16C32T / 64GB

• ict3/4 : 6C12T / 32GB

• ict5/6 : 12C24T / 128GB

• ict7/8/9 : 8C16T / 24GB

• Different types of networks
• WiFi: a, b, g, abg, n, ac

• LAN: 10/100Mbps, 1Gbps

• Internet: Fiber 24Mbps, 48Mbps, Leased lines 80Mbps

• Different OSes
• Windows

• Linux

• macOS

⇒ Interoperability with standards.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Homogeneous
• Different types of machines

• ict1 : 6C12T / 24GB

• ict2 : 16C32T / 64GB

• ict3/4 : 6C12T / 32GB

• ict5/6 : 12C24T / 128GB

• ict7/8/9 : 8C16T / 24GB

• Different types of networks
• WiFi: a, b, g, abg, n, ac

• LAN: 10/100Mbps, 1Gbps

• Internet: Fiber 24Mbps, 48Mbps, Leased lines 80Mbps

• Different OSes
• Windows

• Linux

• macOS

⇒ Interoperability with standards.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Homogeneous
• Different types of machines

• ict1 : 6C12T / 24GB

• ict2 : 16C32T / 64GB

• ict3/4 : 6C12T / 32GB

• ict5/6 : 12C24T / 128GB

• ict7/8/9 : 8C16T / 24GB

• Different types of networks
• WiFi: a, b, g, abg, n, ac

• LAN: 10/100Mbps, 1Gbps

• Internet: Fiber 24Mbps, 48Mbps, Leased lines 80Mbps

• Different OSes
• Windows

• Linux

• macOS

⇒ Interoperability with standards.

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Parallel Models

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 29 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

PRAM

• Parallel Random Access
Machine

• Shared memory
• Multiple processing units .........P1

Shared

Pn

Memory

P3P2

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 30 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

PRAM

Read/write conflicts

• EREW: Exclusive Read Exclusive Write

• CREW: Concurrent Read Exclusive Write

• ERCW: Exclusive Read Concurrent Write

• CRCW: Concurrent Read Concurrent Write

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 31 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Flynn’s Taxonomy

• Classification of computer architecture by Michael J. Flynn
in 1966

• SISD: Single Instruction Single Data

• SIMD: Single Instruction Multiple Data

• MISD: Multiple Instruction Single Data

• MIMD: Multiple Instruction Multiple Data

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 32 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Flynn’s Taxonomy

• Example:

• SISD: Old school single core (scalar or superscalar1) CPUs

• SIMD: GPUs

• MISD: Highly fault tolerance system

• MIMD: Modern multi-core CPUs

1Instruction-level parallelism with pipelining
Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 33 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Flynn’s Taxonomy

• Example:
• SISD: Old school single core (scalar or superscalar1) CPUs

• SIMD: GPUs

• MISD: Highly fault tolerance system

• MIMD: Modern multi-core CPUs

1Instruction-level parallelism with pipelining
Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 33 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Flynn’s Taxonomy

• Example:
• SISD: Old school single core (scalar or superscalar1) CPUs

• SIMD: GPUs

• MISD: Highly fault tolerance system

• MIMD: Modern multi-core CPUs

1Instruction-level parallelism with pipelining
Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 33 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Flynn’s Taxonomy

• Example:
• SISD: Old school single core (scalar or superscalar1) CPUs

• SIMD: GPUs

• MISD: Highly fault tolerance system

• MIMD: Modern multi-core CPUs

1Instruction-level parallelism with pipelining
Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 33 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Flynn’s Taxonomy

• Example:
• SISD: Old school single core (scalar or superscalar1) CPUs

• SIMD: GPUs

• MISD: Highly fault tolerance system

• MIMD: Modern multi-core CPUs

1Instruction-level parallelism with pipelining
Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 33 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Scalability

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 34 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

What?

• The ability to scale
• N servers = N times better performance

• Parallel CPU, disk, network

• More load == more computers

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 35 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Why - Why not?
• Why?

• More brains think faster

• Many problems cannot be solved by one system

• Many bigger problems cannot be solved by many systems

• Why not?
• Load imbalance

• Non parallelizable code
• Initialization

• Interaction

• Dependencies

• Bottleneck from shared resources

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 36 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Why - Why not?
• Why?

• More brains think faster

• Many problems cannot be solved by one system

• Many bigger problems cannot be solved by many systems

• Why not?
• Load imbalance

• Non parallelizable code
• Initialization

• Interaction

• Dependencies

• Bottleneck from shared resources

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 36 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

How?

• Duplicate of machines

• Each machine performs a part of the big work

• Combine the result together

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 37 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Example

Classical J2EE Multi-tier application

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 38 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Consistency

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 39 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

What?
• Well-defined behavior

• Get(k) yields the value from the most recent Put(k,v)

• Example
• UPDATE / SELECT from replicated MySQL

Classical J2EE Multi-tier applicationIntroduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 40 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Why?

• Transparency of distributed systems

• Expectation of behavior from application

• Data quality

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 41 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Why not?

• Hard to achieve good behavior
• “Replica” is hard to keep identical

• Client crashes during content updates

• Server crashes

• Unreliable network

• Think of distributed semaphore / mutex

• Anti-performance
• Consistency requires communication, e.g. latest Put()

• Slow

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 42 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

How?

• Strong consistency
• Wait until all replicas update content

• All further updates are pending

• High latency

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 43 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

How?

• Balance consistency vs performance

• Weak consistency
• Update once

• Propagate updates

• Low latency

• Different Get() may return different values

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 44 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Fault-tolerance

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 45 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

What?

• The ability to keep the system up and running with failure
• Hardware

• Software

• Hide failure from application

• Availability
• Processes can keep running and use their data even when

failure

• Durability
• App’s data will come back when failures are repaired

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 46 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

What?

• The ability to keep the system up and running with failure
• Hardware

• Software

• Hide failure from application

• Availability
• Processes can keep running and use their data even when

failure

• Durability
• App’s data will come back when failures are repaired

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 46 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Why?

• Always a chance for failure
• Hard drive

• Motherboard

• Memory

• CPU

• Probability of failure occurence increases with amount of
servers

• Example: ICTLab’s NAS RAID5 had 2 3TB HDDs died
almost at the same time

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 47 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

How?

• Replication, as before

• If one server crashes, others can still take the work

Classical J2EE Multi-tier application

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 48 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Practical Work 1: TCP File transfer
• Goal: 1-1 File transfer over TCP/IP in CLI, based on the

provided chat system
• One server

• One client

• Using socket

• Write a short report in LATEX:
• Name it « 01.tcp.file.transfer.tex »

• How you design your protocol. Figure.

• How you organize your system. Figure.

• How you implement the file transfer. Code snippet.

• Who does what

• Work in your group, in parallel

• Push your report to corresponding forked Github repository
Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 49 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Practical Work 1: USTH Master Spoiler Alert!

Client / 

Server

Session

Client Server

socket socket

bind

listen

read

writeread

write

Connection

request

read

close

close
EOF

open_listenfd

acceptconnect

open_clientfd

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 50 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Practical Work 1: USTH Master Spoiler Alert!
• socket(): Creates a socket, a communications endpoint

• setsockopt(): Set options on a socket

• bind(): Associate a socket with an address

• gethostbyname(): Get the the address of the machine with
a given name

• listen(): Listen for machines trying to connect to this
machine

• connect(): Establish a connection with another machine

• accept(): Accept a connection

• send(): Send data over a connection

• recv(): Read data from a connection
Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 51 / 51


	Distributed Architecture
	Parallel Models
	Scalability
	Consistency
	Fault-tolerance

