Parallel Models

Scalability

Consistency 000000 Fault-tolerance 0000000

Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable

- Leslie Lamport, 1987

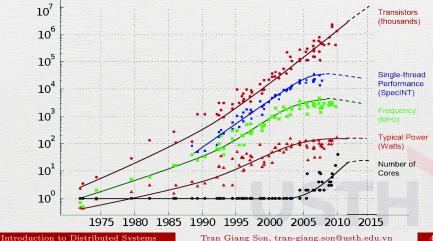
Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

Parallel Models

Scalability 20000 Consistency 000000 Fault-tolerance 0000000

Distributed Architecture


Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

Centralized Computing

• One big, fast guy

35 YEARS OF MICROPROCESSOR TREND DATA

 $\underset{000000}{\mathrm{Consistency}}$

Fault-tolerance

Distributed Systems

- Hardware and software of a collection of independent computers
- Cooperate to implement some functionality

Consistency 000000 Fault-tolerance

Distributed Systems

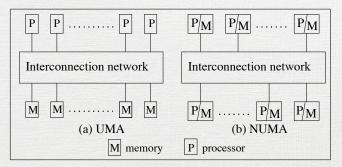
• Abstraction of distribution

- Storage
- Communication
- Computation

Consistency 000000 Fault-tolerance 0000000

Distributed Systems : Examples

- Multi-tier web apps: Facebook, Twitter...
- Cloud-based systems: GCP, Azure, EC2, Drive, Flickr, ...
- Scientific applications: SETI@Home, Folding@Home


Parallel System?

- Multiprocessor systems
 - Direct access to shared memory, UMA
 - Interconnection network
- Multicomputer parallel systems
 - No direct access to shared memory, NUMA
 - Easier scalability

Parallel Models

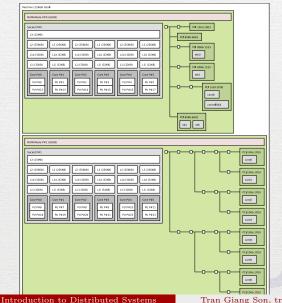
Scalability 20000 Consistency 000000 Fault-tolerance

Parallel System

UMA vs NUMA

Introduction to Distributed Systems

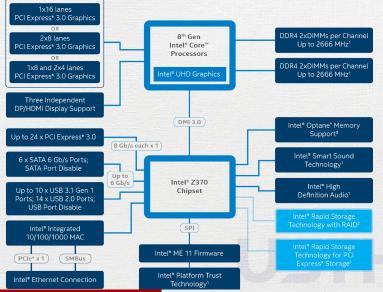
Consistency 000000 Fault-tolerance


Parallel System: ICTLab's ICT2 NUMA example

Machine (63GB total)
NUMANode P#0 (3108)
00000000 000000 0000000 0000000 00000
NUMANode P#1 (3158)
Package P#1 01 024
L3 (2048) Card1
L2 (256K8)
LLd (32K8)
LU (32K8)
Con MA Con MA<

Introduction to Distributed Systems

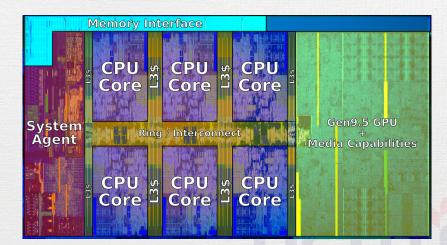
Consistency 000000 Fault-tolerance 0000000


Parallel System: ICTLab's ICT5 NUMA example

Tran Giang Son, tran-giang.son@usth.edu.vn

Consistency 000000

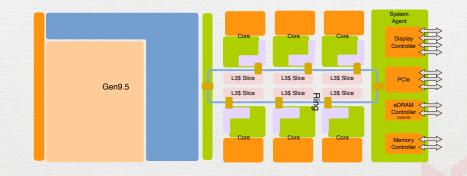
Parallel System: Intel Coffee Lake



Introduction to Distributed Systems

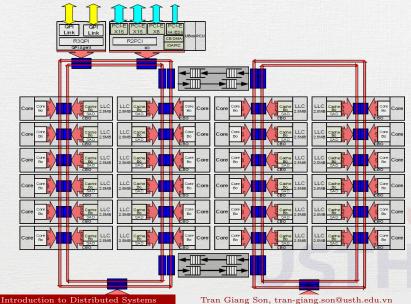
Tran Giang Son, tran-giang.son@usth.edu.vn

Consistency 000000 $\begin{array}{c} Fault-tolerance\\ 0000000\end{array}$

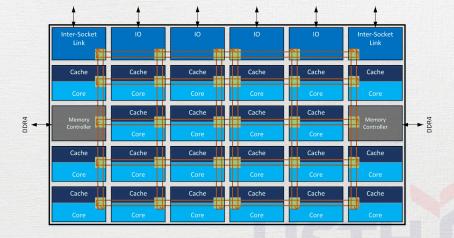

Parallel System: Intel Coffee Lake 8700K

Introduction to Distributed Systems

Consistency 000000 Fault-tolerance


Parallel System: Intel Coffee Lake 8700K

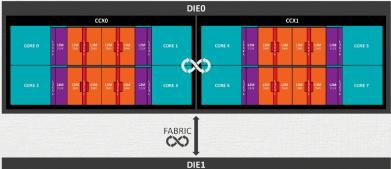
Parallel Models


Scalability 20000 Consistency 000000 Fault-tolerance

Parallel System: Intel Broadwell EP Xeons

Consistency 000000 Fault-tolerance

Parallel System: Intel Skylake SP Xeons

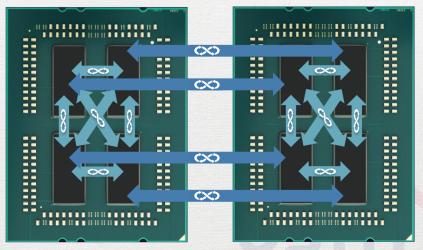


Introduction to Distributed Systems

Consistency 000000

Parallel System: AMD ThreadRipper

• Intra-Socket



Parallel Models 00000 Scalability 00000 Consistency 000000 Fault-tolerance 0000000

Parallel System: AMD Epyc

• Inter-Socket

Introduction to Distributed Systems

Consistency 000000 Fault-tolerance 0000000

Why?

- Performance
- Scalability
- Reliability
 - Availability, fault-tolerance
- Modularity
- Resource sharing
- Efficiency

Parallel Model

calability

Consistency 000000 Fault-tolerance 0000000

Why not?

- Communication
- Synchronization
- Fault-tolerance
- Security
- Scalability

Introduction to Distributed Systems

Distributed System: Common mistakes

- The network is reliable
- Latency is zero
- Bandwidth is infinite
- The network is secure
- Topology doesn't change
- There is one administrator
- The network is homogeneous

Distributed System: Common mistakes - Network

- Hardware failures: switch/router failure, cable failure, power failure
- Solutions
 - Hardware: redundancy
 - Software: reliable messaging. Retries. Ordering. Integrity.

Fault-tolerance

Distributed System: Common mistakes - Latency

• Latency?

Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

- Latency?
 - Not bandwidth
 - Time for data to move from one place to another (sec, ms)

- Latency?
 - Not bandwidth
 - Time for data to move from one place to another (sec, ms)
- Limit: speed of light

- Latency?
 - Not bandwidth
 - Time for data to move from one place to another (sec, ms)
- Limit: speed of light :
 - 300,000 km/s
 - Ping Hanoi to Washington DC?

- Latency?
 - Not bandwidth
 - Time for data to move from one place to another (sec, ms)
- Limit: speed of light :
 - 300,000 km/s
 - Ping Hanoi to Washington DC?
 - 13359 km

- Latency?
 - Not bandwidth
 - Time for data to move from one place to another (sec, ms)
- Limit: speed of light :
 - 300,000 km/s
 - Ping Hanoi to Washington DC?
 - 13359 km
 - 44.53ms

- Latency?
 - Not bandwidth
 - Time for data to move from one place to another (sec, ms)
- Limit: speed of light :
 - 300,000 km/s
 - Ping Hanoi to Washington DC?
 - 13359 km
 - 44.53ms
 - 89ms roundtrip

- Latency?
 - Not bandwidth
 - Time for data to move from one place to another (sec, ms)
- Limit: speed of light :
 - 300,000 km/s
 - Ping Hanoi to Washington DC?
 - 13359 km
 - 44.53ms
 - 89ms roundtrip
- \Rightarrow Think about latency.

Distributed System: Common mistakes - Bandwidth

- Bandwidth: how much data can be transferred (bit/sec)
- Faster and faster
- Packet loss
- \Rightarrow Use compression, if possible

Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance 000000 Distributed System. Common Instakes - Secured Network

- Intermediate nodes between hosts
- Packet sniffing, eavesdropping on routers, switches
- Unsecured WiFi
- \Rightarrow Think about network security since day 1

Fault-tolerance

Distributed System: Common mistakes - Topology

• Myth: the network topology doesn't change

Distributed System: Common mistakes - Topology

- Myth: the network topology doesn't change
- Reality:
 - Adding servers
 - Laptops and phones connect to network day by day
 - Topology changes

Distributed System: Common mistakes - Topology

- Myth: the network topology doesn't change
- Reality:
 - Adding servers
 - Laptops and phones connect to network day by day
 - Topology changes
- \Rightarrow Do not rely on specific endpoints or routes \Rightarrow Use DNS.

Distributed System: Common mistakes - Administrators

- ICTLab : 1 administator
- USTH : 2 administrators
- Netnam : N administrators
- FPT : M administrators
- Different degrees of expertise
- Difficult to locate problems

- Different types of machines
 - ict1 : 6C12T / 24GB
 - ict2 : 16C32T / 64GB
 - ict3/4 : 6C12T / 32GB
 - ict5/6 : 12C24T / 128GB
 - ict7/8/9 : 8C16T / 24GB

- Different types of machines
 - ict1 : 6C12T / 24GB
 - ict2 : 16C32T / 64GB
 - ict3/4 : 6C12T / 32GB
 - ict5/6 : 12C24T / 128GB
 - ict7/8/9 : 8C16T / 24GB
- Different types of networks
 - WiFi: a, b, g, abg, n, ac
 - LAN: 10/100Mbps, 1Gbps
 - Internet: Fiber 24Mbps, 48Mbps, Leased lines 80Mbps

- Different types of machines
 - ict1 : 6C12T / 24GB
 - ict2 : 16C32T / 64GB
 - ict3/4 : 6C12T / 32GB
 - ict5/6 : 12C24T / 128GB
 - ict7/8/9 : 8C16T / 24GB
- Different types of networks
 - WiFi: a, b, g, abg, n, ac
 - LAN: 10/100Mbps, 1Gbps
 - Internet: Fiber 24Mbps, 48Mbps, Leased lines 80Mbps
- Different OSes

Introduction to Distributed Systems

- Different types of machines
 - ict1 : 6C12T / 24GB
 - ict2 : 16C32T / 64GB
 - ict3/4 : 6C12T / 32GB
 - ict5/6 : 12C24T / 128GB
 - ict7/8/9 : 8C16T / 24GB
- Different types of networks
 - WiFi: a, b, g, abg, n, ac
 - LAN: 10/100Mbps, 1Gbps
 - Internet: Fiber 24Mbps, 48Mbps, Leased lines 80Mbps
- Different OSes

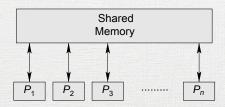
Introduction to Distributed Systems

Scalability 20000 Consistency 000000 Fault-tolerance 0000000

Parallel Models

Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn


Distributed Architecture

Parallel Models

Scalability 20000 Consistency 000000 Fault-tolerance

PRAM

- Parallel Random Access Machine
- Shared memory
- Multiple processing units

calability

Consistency 000000 Fault-tolerance

PRAM

Read/write conflicts

- EREW: **E**xclusive **R**ead **E**xclusive **W**rite
- CREW: Concurrent Read Exclusive Write
- ERCW: Exclusive Read Concurrent Write
- CRCW: Concurrent Read Concurrent Write

Flynn's Taxonomy

- Classification of computer architecture by Michael J. Flynn in 1966
 - SISD: Single Instruction Single Data
 - SIMD: Single Instruction Multiple Data
 - MISD: Multiple Instruction Single Data
 - MIMD: Multiple Instruction Multiple Data

Scalability 00000 Consistency 000000 Fault-tolerance 0000000

Flynn's Taxonomy

¹Instruction-level parallelism with pipelining

Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

Scalability 20000 Consistency 000000 Fault-tolerance 0000000

Flynn's Taxonomy

• Example:

• SISD: Old school single core (scalar or superscalar¹) CPUs

¹Instruction-level parallelism with pipelining

Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

Flynn's Taxonomy

• Example:

• SISD: Old school single core (scalar or superscalar¹) CPUs

• SIMD: GPUs

¹Instruction-level parallelism with pipelining Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

Scalability

Consistency 000000 Fault-tolerance 0000000

Flynn's Taxonomy

- Example:
 - SISD: Old school single core (scalar or superscalar¹) CPUs
 - SIMD: GPUs
 - MISD: Highly fault tolerance system

¹Instruction-level parallelism with pipelining Introduction to Distributed Systems Tran Giang Son, t

Flynn's Taxonomy

- Example:
 - SISD: Old school single core (scalar or superscalar¹) CPUs
 - SIMD: GPUs
 - MISD: Highly fault tolerance system
 - MIMD: Modern multi-core CPUs

¹Instruction-level parallelism with pipelining Introduction to Distributed Systems Tran Giang Son, t

Tran Giang Son, tran-giang.son@usth.edu.vn

Scalability •0000 Consistency 000000 Fault-tolerance 0000000

Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

Distributed Architecture

Parallel Models

 $_{\substack{\text{oooo}}}^{\text{Scalability}}$

Consistency 000000 Fault-tolerance 0000000

What?

• The ability to scale

- N servers = N times better performance
- Parallel CPU, disk, network
- More load == more computers

Why - Why not?

- Why?
 - More brains think faster
 - Many problems cannot be solved by one system
 - Many bigger problems cannot be solved by many systems

Why - Why not?

- Why?
 - More brains think faster
 - Many problems cannot be solved by one system
 - Many bigger problems cannot be solved by many systems
- Why not?
 - Load imbalance
 - Non parallelizable code
 - Initialization
 - Interaction
 - Dependencies
 - Bottleneck from shared resources

Introduction to Distributed Systems

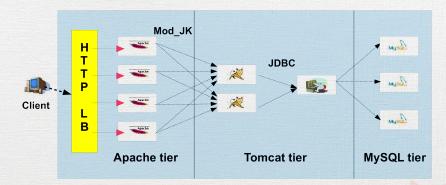
Tran Giang Son, tran-giang.son@usth.edu.vn

 $\substack{\text{Scalability}\\000 \bullet 0}$

Consistency 000000 Fault-tolerance

How?

- Duplicate of machines
- Each machine performs a part of the big work
- Combine the result together


Distributed Architecture

Parallel Model

 $\substack{\text{Scalability}\\ 00000}$

Consistency 000000 Fault-tolerance

Example

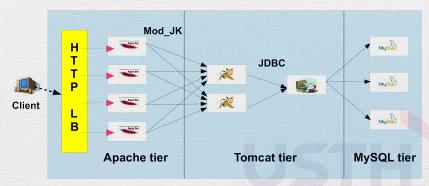
Classical J2EE Multi-tier application

Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

Scalability 20000 $\underset{\bullet 00000}{\rm Consistency}$

Fault-tolerance


Consistency

Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

What?

- Well-defined behavior
 - Get(k) yields the value from the most recent Put(k,v)
- Example
 - UPDATE / SELECT from replicated MySQL

calability

Consistency 00●000 Fault-tolerance

Why?

- Transparency of distributed systems
- Expectation of behavior from application
- Data quality

Why not?

- Hard to achieve good behavior
 - "Replica" is hard to keep identical
 - Client crashes during content updates
 - Server crashes
 - Unreliable network
- Think of distributed semaphore / mutex
- Anti-performance
 - Consistency requires communication, e.g. latest Put()
 - Slow

calability

Consistency 0000●0 Fault-tolerance

How?

• Strong consistency

- Wait until all replicas update content
- All further updates are pending
- High latency

How?

- Balance consistency vs performance
- Weak consistency
 - Update once
 - Propagate updates
 - Low latency
 - Different Get() may return different values

Introduction to Distributed Systems

Tran Giang Son, tran-giang.son@usth.edu.vn

Scalability 20000 Consistency 000000 Fault-tolerance

Fault-tolerance

Introduction to Distributed Systems

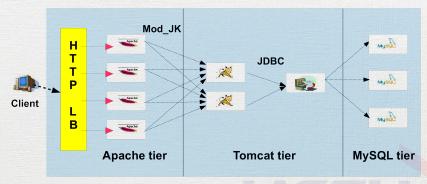
Tran Giang Son, tran-giang.son@usth.edu.vn

What?

- The ability to keep the system up and running with failure
 - Hardware
 - Software
- Hide failure from application

What?

- The ability to keep the system up and running with failure
 - Hardware
 - Software
- Hide failure from application
- Availability
 - Processes can keep running and use their data even when failure
- Durability
 - App's data will come back when failures are repaired


Why?

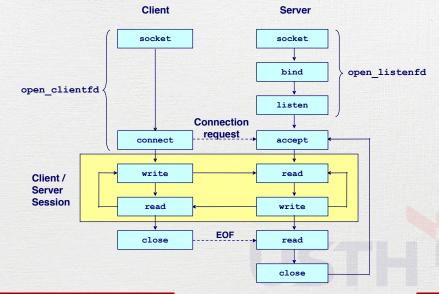
- Always a chance for failure
 - Hard drive
 - Motherboard
 - Memory
 - CPU
- Probability of failure occurence increases with amount of servers
- Example: ICTLab's NAS RAID5 had 2 3TB HDDs died almost at the same time

How?

- Replication, as before
- If one server crashes, others can still take the work

Classical J2EE Multi-tier application

Introduction to Distributed Systems


Practical Work 1: TCP File transfer

- Goal: 1-1 File transfer over TCP/IP in CLI, based on the provided chat system
 - One server
 - One client
 - Using socket
- Write a short report in IAT_EX :
 - Name it « 01.tcp.file.transfer.tex »
 - How you design your protocol. Figure.
 - How you organize your system. Figure.
 - How you implement the file transfer. Code snippet.
 - Who does what
- Work in your group, in parallel

Introduction to Distributed Systems

Practical Work 1: USTH Master Spoiler Alert!

Introduction to Distributed Systems

Practical Work 1: USTH Master Spoiler Alert!

- socket(): Creates a socket, a communications endpoint
- setsockopt(): Set options on a socket
- bind(): Associate a socket with an address
- gethostbyname(): Get the the address of the machine with a given name
- listen(): Listen for machines trying to connect to this machine
- connect(): Establish a connection with another machine
- accept(): Accept a connection
- send(): Send data over a connection
- recv(): Read data from a connection

Introduction to Distributed Systems

 $Tran\ Giang\ Son,\ tran-giang.son@usth.edu.vn$