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A distributed system is one in which the failure of a
computer you didn’t even know existed can render your
own computer unusable

- Leslie Lamport, 1987
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Distributed Architecture
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Centralized Computing
• One big, fast guy
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Distributed Systems

• Hardware and software of a collection of independent
computers

• Cooperate to implement some functionality
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Distributed Systems

• Abstraction of distribution
• Storage

• Communication

• Computation
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Distributed Systems : Examples

• Multi-tier web apps: Facebook, Twitter. . .

• Cloud-based systems: GCP, Azure, EC2, Drive, Flickr, . . .

• Scientific applications: SETI@Home, Folding@Home
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Parallel System?

• Multiprocessor systems
• Direct access to shared memory, UMA

• Interconnection network

• Multicomputer parallel systems
• No direct access to shared memory, NUMA

• Easier scalability
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Parallel System
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Parallel System: ICTLab’s ICT2 NUMA example
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Parallel System: ICTLab’s ICT5 NUMA example
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Parallel System: Intel Coffee Lake
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Parallel System: Intel Coffee Lake 8700K
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Parallel System: Intel Coffee Lake 8700K
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Parallel System: Intel Broadwell EP Xeons
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Parallel System: Intel Skylake SP Xeons
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Parallel System: AMD ThreadRipper
• Intra-Socket
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Parallel System: AMD Epyc

• Inter-Socket
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Why?

• Performance

• Scalability

• Reliability
• Availability, fault-tolerance

• Modularity

• Resource sharing

• Efficiency
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Why not?

• Communication

• Synchronization

• Fault-tolerance

• Security

• Scalability
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Distributed System: Common mistakes

• The network is reliable

• Latency is zero

• Bandwidth is infinite

• The network is secure

• Topology doesn’t change

• There is one administrator

• The network is homogeneous

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 21 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Distributed System: Common mistakes - Network

• Hardware failures: switch/router failure, cable failure, power
failure

• Solutions
• Hardware: redundancy

• Software: reliable messaging. Retries. Ordering. Integrity.
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Distributed System: Common mistakes - Latency

• Latency?

• Not bandwidth

• Time for data to move from one place to another (sec, ms)

• Limit: speed of light :
• 300,000 km/s

• Ping Hanoi to Washington DC?

• 13359 km

• 44.53ms

• 89ms roundtrip

⇒ Think about latency.
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Distributed System: Common mistakes - Bandwidth

• Bandwidth: how much data can be transferred (bit/sec)

• Faster and faster

• Packet loss

⇒ Use compression, if possible
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Distributed System: Common mistakes - Secured
Network

• Intermediate nodes between hosts

• Packet sniffing, eavesdropping on routers, switches

• Unsecured WiFi

⇒ Think about network security since day 1
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Distributed System: Common mistakes - Topology

• Myth: the network topology doesn’t change

• Reality:
• Adding servers

• Laptops and phones connect to network day by day

• Topology changes

⇒ Do not rely on specific endpoints or routes ⇒ Use DNS.
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Distributed System: Common mistakes - Administrators

• ICTLab : 1 administator

• USTH : 2 administrators

• Netnam : N administrators

• FPT : M administrators

• Different degrees of expertise

• Difficult to locate problems
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Distributed System: Common mistakes - Homogeneous
• Different types of machines

• ict1 : 6C12T / 24GB

• ict2 : 16C32T / 64GB

• ict3/4 : 6C12T / 32GB

• ict5/6 : 12C24T / 128GB

• ict7/8/9 : 8C16T / 24GB

• Different types of networks
• WiFi: a, b, g, abg, n, ac

• LAN: 10/100Mbps, 1Gbps

• Internet: Fiber 24Mbps, 48Mbps, Leased lines 80Mbps

• Different OSes
• Windows

• Linux

• macOS

⇒ Interoperability with standards.
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Parallel Models
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PRAM

• Parallel Random Access
Machine

• Shared memory
• Multiple processing units .........P1

Shared

Pn

Memory

P3P2
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PRAM

Read/write conflicts

• EREW: Exclusive Read Exclusive Write

• CREW: Concurrent Read Exclusive Write

• ERCW: Exclusive Read Concurrent Write

• CRCW: Concurrent Read Concurrent Write
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Flynn’s Taxonomy

• Classification of computer architecture by Michael J. Flynn
in 1966

• SISD: Single Instruction Single Data

• SIMD: Single Instruction Multiple Data

• MISD: Multiple Instruction Single Data

• MIMD: Multiple Instruction Multiple Data
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Flynn’s Taxonomy

• Example:

• SISD: Old school single core (scalar or superscalar1) CPUs

• SIMD: GPUs

• MISD: Highly fault tolerance system

• MIMD: Modern multi-core CPUs

1Instruction-level parallelism with pipelining
Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 33 / 51
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Scalability
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What?

• The ability to scale
• N servers = N times better performance

• Parallel CPU, disk, network

• More load == more computers

Introduction to Distributed Systems Tran Giang Son, tran-giang.son@usth.edu.vn 35 / 51



Distributed Architecture Parallel Models Scalability Consistency Fault-tolerance

Why - Why not?
• Why?

• More brains think faster

• Many problems cannot be solved by one system

• Many bigger problems cannot be solved by many systems

• Why not?
• Load imbalance

• Non parallelizable code
• Initialization

• Interaction

• Dependencies

• Bottleneck from shared resources
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How?

• Duplicate of machines

• Each machine performs a part of the big work

• Combine the result together
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Example

Classical J2EE Multi-tier application
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Consistency
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What?
• Well-defined behavior

• Get(k) yields the value from the most recent Put(k,v)

• Example
• UPDATE / SELECT from replicated MySQL
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Why?

• Transparency of distributed systems

• Expectation of behavior from application

• Data quality
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Why not?

• Hard to achieve good behavior
• “Replica” is hard to keep identical

• Client crashes during content updates

• Server crashes

• Unreliable network

• Think of distributed semaphore / mutex

• Anti-performance
• Consistency requires communication, e.g. latest Put()

• Slow
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How?

• Strong consistency
• Wait until all replicas update content

• All further updates are pending

• High latency
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How?

• Balance consistency vs performance

• Weak consistency
• Update once

• Propagate updates

• Low latency

• Different Get() may return different values
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Fault-tolerance
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What?

• The ability to keep the system up and running with failure
• Hardware

• Software

• Hide failure from application

• Availability
• Processes can keep running and use their data even when

failure

• Durability
• App’s data will come back when failures are repaired
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Why?

• Always a chance for failure
• Hard drive

• Motherboard

• Memory

• CPU

• Probability of failure occurence increases with amount of
servers

• Example: ICTLab’s NAS RAID5 had 2 3TB HDDs died
almost at the same time
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How?

• Replication, as before

• If one server crashes, others can still take the work

Classical J2EE Multi-tier application
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Practical Work 1: TCP File transfer
• Goal: 1-1 File transfer over TCP/IP in CLI, based on the

provided chat system
• One server

• One client

• Using socket

• Write a short report in LATEX:
• Name it « 01.tcp.file.transfer.tex »

• How you design your protocol. Figure.

• How you organize your system. Figure.

• How you implement the file transfer. Code snippet.

• Who does what

• Work in your group, in parallel

• Push your report to corresponding forked Github repository
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Practical Work 1: USTH Master Spoiler Alert!

Client / 

Server

Session

Client Server

socket socket

bind

listen

read

writeread

write

Connection

request

read

close

close
EOF

open_listenfd

acceptconnect

open_clientfd
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Practical Work 1: USTH Master Spoiler Alert!
• socket(): Creates a socket, a communications endpoint

• setsockopt(): Set options on a socket

• bind(): Associate a socket with an address

• gethostbyname(): Get the the address of the machine with
a given name

• listen(): Listen for machines trying to connect to this
machine

• connect(): Establish a connection with another machine

• accept(): Accept a connection

• send(): Send data over a connection

• recv(): Read data from a connection
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