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What Why How

What?

• A simple programming model that applies to many
large-scale computing problem

• Parallel computation

• Workload distribution

• Load balancing

• Fault tolerance

• Not a language

• Not a library
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What Why How

What?

• Example
• Count number of students inside USTH building at the

moment?

• Traditional way?

• Smart way?

• Smarter way?
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What?

• Traditional way

:
• Place a counting table at the parking entrance of USTH

• Announce to everyone to go down there, make a queue, count

Problem: slow, bottleneck at the counting table
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What Why How

What?

• Smart way

: place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44



What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44



What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44



What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44



What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44



What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44



What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44



What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44



What Why How

What?

• Smarter way

:
• Come to each classroom

• Ask the class monitor to count

• Aggregate the results in the second time

• Less intrusive, more work done, can be better parallelized
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What Why How

What?

• Two operations

• map(): “one to one” transform of each element in a set

mapf
S = {f(x)|x ∈ S}

• reduce(): “many to one” transform of a element set

reducef
S = f({x|x ∈ S})

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 8 / 44



What Why How

map()

• Pre-map()

• Reads data from source
• Transform
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Why
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What Why How

Data explosion

• A lot of data
• 130+ trillion of webpages (2016)

• 20KB each

• 2,600,000+ TB
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What Why How

Data explosion

• Hard drive: 100MB/s sequential read
• ~824,450,000 years to read

• SSD
• SATA3 500MB/s sequential read ~ 164,800,000 years
• M.2 3500MB/s sequential read ~ 23,500,000 years

• Processing this data
• Sorting / Searching / Indexing / Classification
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Why MapReduce?

• Traditional programming is serial

• Break processing into independent batches

• Process concurrently

• Aggregate result
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Parallelization

• Multi-core

• Multi-CPU

• Cluster

• Grid
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Parallelization
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Parallelization

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 19 / 44



What Why How

Parallelization

Key Value

Name Sunway Taihulight
Nodes 40,960
CPU SW26010, 256 cores 1.45GHz/node
Cores 10,649,600
Memory 1.31PB (1310TB)
Storage 20PB (20000TB)
Peak 125 PFLOPS
Linpack 93.01 PFLOPS
Power 15MW
Location National Supercomputer Center, Wuxi, China
Active June 2016
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Why MapReduce?

Challenges:

• Breaking problem into smaller task

• Assigning tasks to machines?

• Partitioning and distributing data?

• Sharing intermediate data?

• Coordinating synchronization? Scheduling? Fault-tolerance?
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Why MapReduce?

• Scale “out”, not scale “up”
• E.g. more workers, not more levels of management

• Failure are common

• Process data sequentially and not randomly
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How
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Implementations

• Google
• Internal

• Proprietary

• Apache Hadoop MapReduce
• Most common open source implementation

• Amazon Elastic MapReduce
• On EC2
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Who does what?

• Implement two methods
• map(): Mapper

• reduce(): Reducer
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MapReduce architecture
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Execution Framework

• The execution framework (runtime) handles everything else
• Scheduling: who does map()? who does reduce()?

• Data distribution: move data to processes (worker)

• Synchronization: gathers, sorts,

• Fault-tolerance: detects failure, restarts

• Distributed file system
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Who does what?

• A “master” controls execution of “slaves”

• Mappers are put near their input block
• Minimize network usage

• Mappers persist outputs to disk before passing to producer
• For fault tolerance
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Fault Tolerance

• Task crashes
• Retry on other node

• map()?

no deps

• reduce()? saved on disk

• Important: Task independence
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Fault Tolerance

• Node crashes
• Start tasks on a new node

• map()?

restart

• reduce()? nothing else
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Fault Tolerance

• Task becomes slow
• Launch same task on another node

• Use result of whoever finishes first

• Kill the second one

• Popular in large cluster
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Extras

• Extra optional supporting functions
• partition(): divide key space for parallelization

• combine(): mini reducers to combine after map

• Barriers
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Example: Word Count

• The classic example for MapReduce

• Input: a large text file

• Output : number of occurrence of each word
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Example: Word Count

• map(): count occurence of word in a single line

1. three witches watch three
swatch watches

<three, 1>
<witches, 1>
<watch, 1>
<three, 1>
<swatch, 1>
<watches, 1>
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Example: Word Count

• map(): count occurence of word in a single line

2. which witch watches which
swatch watch

<which, 1>
<witch, 1>
<watches, 1>
<which, 1>
<swatch, 1>
<watch, 1>
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Example: Word Count

• map(): count occurence of word in a single line

<three, 1>
<witches, 1>
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Example: Word Count

• Group pairs that have same K
<three, 1>
<witches, 1>
<watch, 1>
<three, 1>
<swatch, 1>
<watches, 1>
<which, 1>
<witch, 1>
<watches, 1>
<which, 1>
<swatch, 1>
<watch, 1>

<three, 1>
<three, 1>
<witches, 1>
<watch, 1>
<watch, 1>
<swatch, 1>
<swatch, 1>
<watches, 1>
<watches, 1>
<which, 1>
<which, 1>
<witch, 1>
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Example: Word Count

• reduce(): combine occurence of word in a single line
<three, 1>
<three, 1>
<witches, 1>
<watch, 1>
<watch, 1>
<swatch, 1>
<swatch, 1>
<watches, 1>
<watches, 1>
<which, 1>
<which, 1>
<witch, 1>

<three, 2>
<witches, 1>
<watch, 2>
<swatch, 2>
<watches, 2>
<which, 2>
<witch, 1>
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Example: Word Count

1. three
witches
watch three
swatch
watches

2. which
witch
watches
which
swatch
watch

<three, 1>
<witches, 1>
<watch, 1>
<three, 1>
<swatch, 1>
<watches, 1>

<which, 1>
<witch, 1>
<watches, 1>
<which, 1>
<swatch, 1>
<watch, 1>

<three, 1>
<three, 1>
<witches, 1>
<watch, 1>
<watch, 1>
<swatch, 1>
<swatch, 1>
<watches, 1>
<watches, 1>
<which, 1>
<which, 1>
<witch, 1>

<three, 2>
<witches, 1>
<watch, 2>
<swatch, 2>
<watches, 2>
<which, 2>
<witch, 1>
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Example: Word Count

Easy?
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Example: Word Count Extra

three swiss witch-bitches, which
wished to be switched swiss
witch-bitches, watch three swiss
swatch watch switches. which
swiss witch-bitch, which wishes
to be a switched witch-bitch,
wishes to watch which swiss
swatch watch switch?

<swiss, 5>
<witch, 4>
<watch, 4>
<three, 2>
<bitches, 2>
<switched, 2>
<swatch, 2>
<bitch, 2>
<wishes, 2>
<wished, 1>
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Practical work 4: Word Count

• Create a new directory named «WordCount»

• Use any MapReduce framework of your choice to implement
Word Count example

• Java is OK

• C/C++ is still preferred
• No MapReduce framework for C/C++ at the moment

• Invent yourself
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Practical work 4: Word Count

• Write a short report in LATEX:
• Name it « 04.word.count.tex »

• Why you chose your specific MapReduce implementation

• How your Mapper and Reducer work. Figure.

• Who does what.

• Work in your group, in parallel

• Push your report to corresponding forked Github repository
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Practical work 5: The Longest Path
• Use any MapReduce framework of your choice to implement

LongestPath toy project
• Input: set of files, one for each of your laptops

• Each line contain one full path of a file

• find /

• Output: longest path(s)

• Write a short report in LATEX:
• Name it « 05.word.count.tex »

• How your Mapper and Reducer work. Figure.

• Who does what.

• Work in your group, in parallel

• Push your report to corresponding forked Github repository
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