
What Why How

MapReduce

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 1 / 44

What Why How

What

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 2 / 44

What Why How

What?

• A simple programming model that applies to many
large-scale computing problem

• Parallel computation

• Workload distribution

• Load balancing

• Fault tolerance

• Not a language

• Not a library

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 3 / 44

What Why How

What?

• Example
• Count number of students inside USTH building at the

moment?

• Traditional way?

• Smart way?

• Smarter way?

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 4 / 44

What Why How

What?

• Traditional way

:
• Place a counting table at the parking entrance of USTH

• Announce to everyone to go down there, make a queue, count

Problem: slow, bottleneck at the counting table

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 44

What Why How

What?

• Traditional way :
• Place a counting table at the parking entrance of USTH

• Announce to everyone to go down there, make a queue, count

Problem: slow, bottleneck at the counting table

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 44

What Why How

What?

• Traditional way :
• Place a counting table at the parking entrance of USTH

• Announce to everyone to go down there, make a queue, count

Problem: slow, bottleneck at the counting table

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 44

What Why How

What?

• Traditional way :
• Place a counting table at the parking entrance of USTH

• Announce to everyone to go down there, make a queue, count

Problem: slow, bottleneck at the counting table

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 44

What Why How

What?

• Smart way

: place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44

What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44

What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44

What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44

What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44

What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44

What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44

What Why How

What?

• Smart way : place counting tables at every possible exit of
USTH building

• Emergency exit near the museum

• Parking exits on the ground floor (2)

• Stair exits on the second floor (3)

• Hit fire alarm

• Wait and count

• Still bottleneck at counting tables

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 44

What Why How

What?

• Smarter way

:
• Come to each classroom

• Ask the class monitor to count

• Aggregate the results in the second time

• Less intrusive, more work done, can be better parallelized

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 7 / 44

What Why How

What?

• Smarter way :
• Come to each classroom

• Ask the class monitor to count

• Aggregate the results in the second time

• Less intrusive, more work done, can be better parallelized

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 7 / 44

What Why How

What?

• Smarter way :
• Come to each classroom

• Ask the class monitor to count

• Aggregate the results in the second time

• Less intrusive, more work done, can be better parallelized

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 7 / 44

What Why How

What?

• Smarter way :
• Come to each classroom

• Ask the class monitor to count

• Aggregate the results in the second time

• Less intrusive, more work done, can be better parallelized

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 7 / 44

What Why How

What?

• Smarter way :
• Come to each classroom

• Ask the class monitor to count

• Aggregate the results in the second time

• Less intrusive, more work done, can be better parallelized

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 7 / 44

What Why How

What?

• Two operations

• map(): “one to one” transform of each element in a set

mapf
S = {f(x)|x ∈ S}

• reduce(): “many to one” transform of a element set

reducef
S = f({x|x ∈ S})

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 8 / 44

What Why How

map()

• Pre-map()

• Reads data from source
• Transform

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 44

What Why How

Why

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 10 / 44

What Why How

Data explosion

• A lot of data
• 130+ trillion of webpages (2016)

• 20KB each

• 2,600,000+ TB

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 11 / 44

What Why How

Data explosion

• Hard drive: 100MB/s sequential read
• ~824,450,000 years to read

• SSD
• SATA3 500MB/s sequential read ~ 164,800,000 years
• M.2 3500MB/s sequential read ~ 23,500,000 years

• Processing this data
• Sorting / Searching / Indexing / Classification

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 12 / 44

What Why How

Data explosion

• Hard drive: 100MB/s sequential read
• ~824,450,000 years to read

• SSD
• SATA3 500MB/s sequential read ~ 164,800,000 years
• M.2 3500MB/s sequential read ~ 23,500,000 years

• Processing this data
• Sorting / Searching / Indexing / Classification

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 12 / 44

What Why How

Data explosion

• Hard drive: 100MB/s sequential read
• ~824,450,000 years to read

• SSD
• SATA3 500MB/s sequential read ~ 164,800,000 years
• M.2 3500MB/s sequential read ~ 23,500,000 years

• Processing this data
• Sorting / Searching / Indexing / Classification

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 12 / 44

What Why How

Why MapReduce?

• Traditional programming is serial

• Break processing into independent batches

• Process concurrently

• Aggregate result

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 44

What Why How

Parallelization

• Multi-core

• Multi-CPU

• Cluster

• Grid

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 14 / 44

What Why How

Parallelization

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 15 / 44

What Why How

Parallelization

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 16 / 44

What Why How

Parallelization

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 17 / 44

What Why How

Parallelization

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 18 / 44

What Why How

Parallelization

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 19 / 44

What Why How

Parallelization

Key Value

Name Sunway Taihulight
Nodes 40,960
CPU SW26010, 256 cores 1.45GHz/node
Cores 10,649,600
Memory 1.31PB (1310TB)
Storage 20PB (20000TB)
Peak 125 PFLOPS
Linpack 93.01 PFLOPS
Power 15MW
Location National Supercomputer Center, Wuxi, China
Active June 2016

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 20 / 44

What Why How

Why MapReduce?

Challenges:

• Breaking problem into smaller task

• Assigning tasks to machines?

• Partitioning and distributing data?

• Sharing intermediate data?

• Coordinating synchronization? Scheduling? Fault-tolerance?

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 21 / 44

What Why How

Why MapReduce?

• Scale “out”, not scale “up”
• E.g. more workers, not more levels of management

• Failure are common

• Process data sequentially and not randomly

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 22 / 44

What Why How

How

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 44

What Why How

Implementations

• Google
• Internal

• Proprietary

• Apache Hadoop MapReduce
• Most common open source implementation

• Amazon Elastic MapReduce
• On EC2

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 24 / 44

What Why How

Who does what?

• Implement two methods
• map(): Mapper

• reduce(): Reducer

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 25 / 44

What Why How

MapReduce architecture

split 1

split 0 Map

Map

Map

Reduce

Reduce

output 0

output 1

Map phase Shuffle & Sort Reduce phase

split 2

split 3

split 4

split 5

Input
(HDFS)

Intermediate Results
(Local)

Output
(HDFS)

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 26 / 44

What Why How

Execution Framework

• The execution framework (runtime) handles everything else
• Scheduling: who does map()? who does reduce()?

• Data distribution: move data to processes (worker)

• Synchronization: gathers, sorts,

• Fault-tolerance: detects failure, restarts

• Distributed file system

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 27 / 44

What Why How

Who does what?

• A “master” controls execution of “slaves”

• Mappers are put near their input block
• Minimize network usage

• Mappers persist outputs to disk before passing to producer
• For fault tolerance

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 44

What Why How

Fault Tolerance

• Task crashes
• Retry on other node

• map()?

no deps

• reduce()? saved on disk

• Important: Task independence

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 29 / 44

What Why How

Fault Tolerance

• Task crashes
• Retry on other node

• map()? no deps

• reduce()? saved on disk

• Important: Task independence

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 29 / 44

What Why How

Fault Tolerance

• Task crashes
• Retry on other node

• map()? no deps

• reduce()?

saved on disk

• Important: Task independence

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 29 / 44

What Why How

Fault Tolerance

• Task crashes
• Retry on other node

• map()? no deps

• reduce()? saved on disk

• Important: Task independence

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 29 / 44

What Why How

Fault Tolerance

• Task crashes
• Retry on other node

• map()? no deps

• reduce()? saved on disk

• Important: Task independence

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 29 / 44

What Why How

Fault Tolerance

• Node crashes
• Start tasks on a new node

• map()?

restart

• reduce()? nothing else

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 30 / 44

What Why How

Fault Tolerance

• Node crashes
• Start tasks on a new node

• map()? restart

• reduce()? nothing else

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 30 / 44

What Why How

Fault Tolerance

• Node crashes
• Start tasks on a new node

• map()? restart

• reduce()?

nothing else

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 30 / 44

What Why How

Fault Tolerance

• Node crashes
• Start tasks on a new node

• map()? restart

• reduce()? nothing else

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 30 / 44

What Why How

Fault Tolerance

• Task becomes slow
• Launch same task on another node

• Use result of whoever finishes first

• Kill the second one

• Popular in large cluster

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 31 / 44

What Why How

Extras

• Extra optional supporting functions
• partition(): divide key space for parallelization

• combine(): mini reducers to combine after map

• Barriers

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 32 / 44

What Why How

Example: Word Count

• The classic example for MapReduce

• Input: a large text file

• Output : number of occurrence of each word

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 33 / 44

What Why How

Example: Word Count

• map(): count occurence of word in a single line

1. three witches watch three
swatch watches

<three, 1>
<witches, 1>
<watch, 1>
<three, 1>
<swatch, 1>
<watches, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 34 / 44

What Why How

Example: Word Count

• map(): count occurence of word in a single line

1. three witches watch three
swatch watches

<three, 1>
<witches, 1>
<watch, 1>
<three, 1>
<swatch, 1>
<watches, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 34 / 44

What Why How

Example: Word Count

• map(): count occurence of word in a single line

2. which witch watches which
swatch watch

<which, 1>
<witch, 1>
<watches, 1>
<which, 1>
<swatch, 1>
<watch, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 35 / 44

What Why How

Example: Word Count

• map(): count occurence of word in a single line

2. which witch watches which
swatch watch

<which, 1>
<witch, 1>
<watches, 1>
<which, 1>
<swatch, 1>
<watch, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 35 / 44

What Why How

Example: Word Count

• map(): count occurence of word in a single line

<three, 1>
<witches, 1>
<watch, 1>
<three, 1>
<swatch, 1>
<watches, 1>
<which, 1>
<witch, 1>
<watches, 1>
<which, 1>
<swatch, 1>
<watch, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 36 / 44

What Why How

Example: Word Count

• Group pairs that have same K
<three, 1>
<witches, 1>
<watch, 1>
<three, 1>
<swatch, 1>
<watches, 1>
<which, 1>
<witch, 1>
<watches, 1>
<which, 1>
<swatch, 1>
<watch, 1>

<three, 1>
<three, 1>
<witches, 1>
<watch, 1>
<watch, 1>
<swatch, 1>
<swatch, 1>
<watches, 1>
<watches, 1>
<which, 1>
<which, 1>
<witch, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 37 / 44

What Why How

Example: Word Count

• Group pairs that have same K
<three, 1>
<witches, 1>
<watch, 1>
<three, 1>
<swatch, 1>
<watches, 1>
<which, 1>
<witch, 1>
<watches, 1>
<which, 1>
<swatch, 1>
<watch, 1>

<three, 1>
<three, 1>
<witches, 1>
<watch, 1>
<watch, 1>
<swatch, 1>
<swatch, 1>
<watches, 1>
<watches, 1>
<which, 1>
<which, 1>
<witch, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 37 / 44

What Why How

Example: Word Count

• reduce(): combine occurence of word in a single line
<three, 1>
<three, 1>
<witches, 1>
<watch, 1>
<watch, 1>
<swatch, 1>
<swatch, 1>
<watches, 1>
<watches, 1>
<which, 1>
<which, 1>
<witch, 1>

<three, 2>
<witches, 1>
<watch, 2>
<swatch, 2>
<watches, 2>
<which, 2>
<witch, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 38 / 44

What Why How

Example: Word Count

1. three
witches
watch three
swatch
watches

2. which
witch
watches
which
swatch
watch

<three, 1>
<witches, 1>
<watch, 1>
<three, 1>
<swatch, 1>
<watches, 1>

<which, 1>
<witch, 1>
<watches, 1>
<which, 1>
<swatch, 1>
<watch, 1>

<three, 1>
<three, 1>
<witches, 1>
<watch, 1>
<watch, 1>
<swatch, 1>
<swatch, 1>
<watches, 1>
<watches, 1>
<which, 1>
<which, 1>
<witch, 1>

<three, 2>
<witches, 1>
<watch, 2>
<swatch, 2>
<watches, 2>
<which, 2>
<witch, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 39 / 44

What Why How

Example: Word Count

1. three
witches
watch three
swatch
watches

2. which
witch
watches
which
swatch
watch

<three, 1>
<witches, 1>
<watch, 1>
<three, 1>
<swatch, 1>
<watches, 1>

<which, 1>
<witch, 1>
<watches, 1>
<which, 1>
<swatch, 1>
<watch, 1>

<three, 1>
<three, 1>
<witches, 1>
<watch, 1>
<watch, 1>
<swatch, 1>
<swatch, 1>
<watches, 1>
<watches, 1>
<which, 1>
<which, 1>
<witch, 1>

<three, 2>
<witches, 1>
<watch, 2>
<swatch, 2>
<watches, 2>
<which, 2>
<witch, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 39 / 44

What Why How

Example: Word Count

1. three
witches
watch three
swatch
watches

2. which
witch
watches
which
swatch
watch

<three, 1>
<witches, 1>
<watch, 1>
<three, 1>
<swatch, 1>
<watches, 1>

<which, 1>
<witch, 1>
<watches, 1>
<which, 1>
<swatch, 1>
<watch, 1>

<three, 1>
<three, 1>
<witches, 1>
<watch, 1>
<watch, 1>
<swatch, 1>
<swatch, 1>
<watches, 1>
<watches, 1>
<which, 1>
<which, 1>
<witch, 1>

<three, 2>
<witches, 1>
<watch, 2>
<swatch, 2>
<watches, 2>
<which, 2>
<witch, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 39 / 44

What Why How

Example: Word Count

Easy?

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 40 / 44

What Why How

Example: Word Count Extra

three swiss witch-bitches, which
wished to be switched swiss
witch-bitches, watch three swiss
swatch watch switches. which
swiss witch-bitch, which wishes
to be a switched witch-bitch,
wishes to watch which swiss
swatch watch switch?

<swiss, 5>
<witch, 4>
<watch, 4>
<three, 2>
<bitches, 2>
<switched, 2>
<swatch, 2>
<bitch, 2>
<wishes, 2>
<wished, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 41 / 44

What Why How

Example: Word Count Extra

three swiss witch-bitches, which
wished to be switched swiss
witch-bitches, watch three swiss
swatch watch switches. which
swiss witch-bitch, which wishes
to be a switched witch-bitch,
wishes to watch which swiss
swatch watch switch?

<swiss, 5>
<witch, 4>
<watch, 4>
<three, 2>
<bitches, 2>
<switched, 2>
<swatch, 2>
<bitch, 2>
<wishes, 2>
<wished, 1>

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 41 / 44

What Why How

Practical work 4: Word Count

• Create a new directory named «WordCount»

• Use any MapReduce framework of your choice to implement
Word Count example

• Java is OK

• C/C++ is still preferred
• No MapReduce framework for C/C++ at the moment

• Invent yourself

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 42 / 44

What Why How

Practical work 4: Word Count

• Write a short report in LATEX:
• Name it « 04.word.count.tex »

• Why you chose your specific MapReduce implementation

• How your Mapper and Reducer work. Figure.

• Who does what.

• Work in your group, in parallel

• Push your report to corresponding forked Github repository

MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 43 / 44

What Why How

Practical work 5: The Longest Path
• Use any MapReduce framework of your choice to implement

LongestPath toy project
• Input: set of files, one for each of your laptops

• Each line contain one full path of a file

• find /

• Output: longest path(s)

• Write a short report in LATEX:
• Name it « 05.word.count.tex »

• How your Mapper and Reducer work. Figure.

• Who does what.

• Work in your group, in parallel

• Push your report to corresponding forked Github repository
MapReduce Tran Giang Son, tran-giang.son@usth.edu.vn 44 / 44

	What
	Why
	How

