
HTAP Databases: What is New and What is Next
Guoliang Li

Department of Computer Science, Tsinghua University
liguoliang@tsinghua.edu.cn

Chao Zhang
Department of Computer Science, Tsinghua University

cycchao@mail.tsinghua.edu.cn

ABSTRACT
Processing the mixed workloads of transactions and analytical
queries in a single database system can eliminate the ETL process
and enable real-time data analysis on the transaction data. How-
ever, there is no free lunch. Such systems must balance the trade-off
between workload isolation and data freshness due to interweav-
ing workloads of OLTP and OLAP. Since Gartner coined the term,
Hybrid Transactional/Analytical Processing (HTAP), we have wit-
nessed the emergence of various database systems to support HTAP.
One common feature is that they leverage the best of row store
and column store to achieve high quality of HTAP. As they have
disparate storage strategies and processing techniques to satisfy the
requirements of various HTAP applications, it is essential to under-
stand, compare, and evaluate their key techniques. In this tutorial,
we offer a comprehensive survey of HTAP databases. We introduce
a taxonomy of state-of-the-art HTAP databases according to their
storage strategies and architectures. We then take a deep dive into
their key techniques regarding transaction processing, analytical
processing, data synchronization, query optimization, and resource
scheduling. We also introduce existing HTAP benchmarks. Finally,
we discuss the research challenges and open problems for HTAP.

CCS CONCEPTS
• Information systems → Database transaction processing;
Database query processing.

KEYWORDS
HTAP Databases; Transaction Processing; Query Processing
ACM Reference Format:
Guoliang Li and Chao Zhang. 2022. HTAP Databases: What is New and
What is Next. In Proceedings of the 2022 International Conference on Manage-
ment of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM,
Philadelphia, PA, USA, 6 pages. https://doi.org/10.1145/3514221.3522565

1 INTRODUCTION
Background. All organizations are processing more data than ever
at their disposal, and data keeps coming with high velocity, vol-
ume and variety [26, 30, 53, 55]. For businesses with data-intensive
applications, it is beneficial to have a single HTAP system that
not only can efficiently handle on-line transactional processing
(OLTP), but also can perform on-line analytical processing (OLAP)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3522565

for prompt decision-making. For instance, when equipped with an
HTAP system, entrepreneurs in retail applications can analyze the
latest transaction data in real time and identify the sales trend, then
take timely actions, e.g., roll out advertising campaigns for promis-
ing products [35]. In finance applications, vendors can leverage an
HTAP system to process the customer transactions efficiently while
detecting the fraudulent transactions simultaneously [16, 36, 47].
HTAP Definition. Hybrid Transactional/Analytical Processing
(HTAP) is an application architecture proposed by a Gartner report
[35] at 2014, which utilizes in-memory computing technologies
to enable concurrent analytical and transaction processing on the
same in-memory data store. Such an architecture should elimi-
nate the need of Extract-Transform-Load (ETL) process, thereby
accelerating data analytics and bringing dramatic business innova-
tion. In 2018, Gartner extended the HTAP concept to "In-Process
HTAP" [15], an application architecture that supports weaving an-
alytical and transaction processing techniques together as needed
to accomplish the business task. Such a new definition indicates
HTAP is no longer limited to in-memory computing techniques.
Motivation. Over the last few years, numerous database systems
[18–22, 29, 31, 42, 44] have been developed to enable HTAP. One
common feature is that they utilize the best of row store and col-
umn store to achieve high quality of HTAP. Nevertheless, they have
disparate storage strategies and processing techniques albeit the
dual-store feature. This main reason for such diversity is that dif-
ferent classes of HTAP systems target at different applications. For
instance, it depends on whether OLTP or OLAP is the first citizen
of the applications, or both are important. It also depends on the re-
quirements of availability, scalability, system performance, and data
freshness [9] specified in the service level agreements (SLAs) [17].
Consequently, HTAP systems must balance the trade-off between
workload isolation and data freshness due to interweaving work-
loads of OLTP and OLAP. To better harness these HTAP forces for
various applications, it is of paramount importance to study, under-
stand, and compare their key techniques. In this tutorial, we study
HTAP databases that utilize row store and column store together
to efficiently handle the mixed workloads of OLTP and OLAP in a
single database system.
Tutorial Overview.We will provide a comprehensive tutorial on
HTAP databases. The intended length of the tutorial is 3 hours. The
tutorial consists of four sections as follows.
(1) HTAP Databases (30 min). This section starts with an intro-
duction to the background of HTAP databases. It provides a classi-
fication according to their storage architectures, then introduces
the main approaches in each category. As shown in Figure 1, it clas-
sifies HTAP databases into four categories: (a) Primary Row store
+ In-Memory Column store; (b) Distributed Row Store + Column
Store Replica; (c) Disk Row Store + Distributed Column Store; and
(d) Primary Column Store + Delta Row Store. Then, it presents the
main HTAP techniques and representatives for each architecture.

Tutorial SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2483

https://orcid.org/0000-0002-1398-0621
https://orcid.org/0000-0002-8924-7629
https://doi.org/10.1145/3514221.3522565
https://doi.org/10.1145/3514221.3522565

Node 3

Row Store

Disk Master Node 2

Node 1

Memory

Node 3

(a) Primary Row Store+In-Memory Column Store (b) Distributed Row Store + Column Store Replica (c) Disk Row Store + Distributed Column Store (d) Primary Column Store + Delta Row Store
Persistent Storage

Memory

Log

Merge

Column Store

Delta

ClientClient

Disk
Column Store

Memory

Node 1

Partition 1
Partition 2
Partition 3

Master

Partition 3
Partition 1
Partition 2

Node 2

Partition 2
Partition 3
Partition 1

Transform
Row Store

Delta

Column StorePersistent Storage
Log

Merge

 Transform

Figure 1: Storage Architectures of State-Of-The-Art HTAP Databases
Table 1: A Classification of State-Of-The-Art HTAP Databases based on the Storage Architecture

Category HTAP databases TP Throughput AP Throughput TP Scalability AP Scalability Isolation Freshness

Primary Row Store + In-
Memory Column Store

Oracle Dual-Format[19],
SQL Server[20], DB2 BLU[39] High High Medium Low Low High

Distributed Row Store +
Column Store Replica

TiDB[18], SingleStore[44] Medium Medium High High High Low

Disk Row Store + Dis-
tributed Column Store

MySQL Heatwave[31] Medium Medium Medium High High Medium

Primary Column Store
+ Delta Row Store

SAP HANA[43] Medium High Low Medium Low High

Particularly, it summarizes the pros and cons of different HTAP
solutions regarding performance, scalability, workload isolation,
and data freshness (see Table 1).
(2) HTAPTechniques (40min). This section takes a deep dive into
the key techniques of HTAP databases, paying particular attentions
to their techniques concerning transaction processing, analytical
processing, data synchronization, query optimization, and resource
scheduling. The detailed key techniques in each module are shown
in Table 2. Overall, it focuses on five task types for HTAP as follows.
– Transaction processing (TP) techniques. This part will introduce
two types of TP techniques, including (i) MVCC + logging [19, 20,
31, 39, 43] that relies on multi-version concurrency control (MVCC)
protocols and logging techniques for transaction processing; and
(ii) 2PC+Raft+logging [18] that processes the transactions in a dis-
tributed architecture based on a two-phase commit (2PC) protocol,
a Raft-based consensus algorithm, and logging techniques.
– Analytical processing (AP) techniques. This part will introduce
three kinds of AP techniques. The first type is (i) in-memory delta
and column scan [19, 20, 31, 39, 43] that responds to an analytical
query by performing a scan on the in-memory columnar data and
visible delta tuples yet being merged simultaneously. The second
type is (ii) disk-based delta and column scan [18] that scans the
log-based delta files and the column store together for an incoming
query. The third type is (iii) column scan [44] that performs the
query purely in the column store.
– Data synchronization (DS) techniques. This part will introduce
three types of DS techniques for synchronizing data between OLTP
and OLAP, including (i) in-memory delta merge [19, 20, 31, 39, 43]
that merges the newly-inserted in-memory delta data to the main
column store; and (ii) disk-based delta merge [18] that periodically
merges the disk-based delta files to the main column store; and (iii)
rebuild from primary row store [19, 39] that rebuilds the in-memory
column store from the primary row store.
– Query optimization techniques. This part will introduce three as-
pects of query optimization techniques, including (i) column se-
lection for HTAP [19, 31] that automatically selects the columns

from the primary store into main memory based on the history
workload; (ii) hybrid row/column scan [18, 20] that relies on cost-
based functions to determines whether to perform a query over the
row store or over the column store; and (iii) CPU/GPU Accelera-
tion for HTAP [5, 22] that leverages heterogeneous hardware, i.e.,
CPU/GPU architecture to accelerate HTAP workloads, respectively.
– Resource scheduling techniques. This part will introduce the re-
source scheduling techniques that aim to improve the resource
utilization by dynamically allocating resources, e.g., CPU and mem-
ory, for HTAP. It mainly introduces two types of techniques. The
first one is the workload-driven scheduling [43, 45] that adaptively
adjusts the resources of OLTP and OLAP workloads based on the
execution status of workload. The second one is the freshness-
driven scheduling [40] that controls the execution modes of HTAP
workloads based on the freshness metric.
(3) HTAP Benchmarks (10 mins). This section introduces the
existing benchmarks and evaluation practices on HTAP databases.
It will introduce several end-to-end HTAP benchmarks including
TPC-C [48], TPC-H [49], HTAPbench [10], and CH-benchmark [11].
Specifically, it will walk through the key aspects of the benchmarks,
including data generation, execution rule, and performance metrics.
In addition, it will introduce two HTAP micro-benchmarks: ADAPT
[6] and HAP [7] benchmarks. After that, it summarizes the key
insights from existing evaluation practices [13, 38, 40, 42, 45].
(4) Challenges and Open Problems (10 mins). The final section
concludes the tutorial and discusses the research challenges and
open problems for HTAP techniques. It summarizes the tutorial
topics, then presents several challenges and open problems. Firstly,
it presents the limitations of existing methods on column selection
for HTAP workloads, then discusses the possibility of learning-
based methods on this task. Secondly, it discusses the challenges for
HTAP query optimization and calls for a learned query optimizer
for HTAP. Thirdly, it discusses the limitation of current approaches
on HTAP resource scheduling, then calls for new adaptive meth-
ods. Finally, it discusses the limitation of existing benchmarks and
envisions a new HTAP benchmark suite.

Tutorial SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2484

Difference with Existing Tutorial. There has been an 1.5-hour
tutorial [34] on Hybrid Transactional/Analytical Processing (HTAP)
in SIGMOD 2017. It gave a general classification to HTAP systems
including NoSQL databases [1, 2], Hadoop-based data warehouses
[3, 4], and loosely-coupled Spark-based [52] systems. Different
from the previous tutorial, we provide a new taxonomy of HTAP
databases that should support ACID-compliant transaction process-
ing and real-time analytical processing simultaneously. In addition,
we introduce HTAP databases based on the latest developments, i.e.,
the database systems and techniques that emerged since 2017. We
also go deeper into the fundamental techniques of HTAP databases
and summarize the pros and cons of different approaches. Last but
not least, we introduce the benchmarks and evaluation practices
for HTAP, which have not yet been presented.
Target Audience. This tutorial is intended for a wide scope of SIG-
MOD attendees, including entrepreneurs, researchers, developers,
practitioners, and students. For entrepreneurs, this tutorial helps
them gain a comprehensive picture and understanding of the state-
of-the-art HTAP techniques that may be suitable for their business
cases. For researchers, they can gain insights from the pros and
cons of existing techniques, find new topics and research problems,
and contribute their expertise to HTAP databases. For developers
and practitioners, this tutorial could deepen their understanding of
key techniques of HTAP databases and benchmarks, which helps
them to properly choose or improve the HTAP systems for their
applications. For students, this tutorial provides them with crucial
techniques on HTAP.

2 TUTORIAL OUTLINE
We start with an introduction to the background of HTAP, and
then summarize a taxonomy of HTAP databases. We introduce
their main approaches, discuss the pros and cons, then go deeper
into the key techniques with illustrated examples. Furthermore, we
introduce HTAP benchmarks and evaluation practices. Finally, we
discuss research challenges and open problems.

2.1 HTAP Databases
In this tutorial, we study HTAP databases [18–20, 29, 31, 32, 37, 39,
43, 44] that leverage the row store and column store together to
enable HTAP in a single database system.
(a) Primary Row Store+In-Memory Column Store. This cate-
gory of HTAP databases [19, 20, 29, 37, 39] leverage primary row
store as the basis for OLTP workloads and processes OLAP work-
loads with an in-memory column store. All the data is persisted to
the primary row store. The row store is also memory-optimized
such that data updates are efficiently handled. Updates are also
appended to the delta store which will be merged to the column
store. For instance, Oracle in-memory dual-format database [19]
combines the row-based buffer and column-based in-memory com-
pression unit (IMCU) to handle OLTP andOLAPworkloads together.
IMCU is populated from the buffer and changes are cached in the
snapshot metadata unit (SMU). Another example is SQL Server
[20] that developed the columnstore index (CSI) over in-memory
tables in the Hekaton [12] row engine to enable real-time analytical
processing. HTAP databases in this type have high throughput as
all the workloads are processed in memory.

(b) Distributed Row Store+Column Store Replica. This cate-
gory relies on distributed architecture to support HTAP. The master
node asynchronously replicates the logs to the slave nodes when
handling the transaction requests. The primary storage is row store,
some slave nodes will be chosen as column store servers for query
acceleration. Transactions are handled in a distributed way for high
scalability; complex queries are performed in the server nodes with
a column store. A representative is TiDB [18], which is a Raft-based
distributed HTAP database that asynchronously replicates Raft logs
from the leader node to follower nodes storing the data in the row-
based replicas. The logs are also sent to learner nodes that store the
data in columnar format. As a result, the workload isolation level
is high as transactions are processed on nodes with a row store,
and analytical queries are executed on nodes with a column store.
However, the data freshness is low since newly-updated data may
have not been merged to the column store.
(c) Disk Row Store+Distributed Column Store. This kind of
databases utilizes a disk-based RDBMSwith a distributed in-memory
column-store (IMCS) to support HTAP. The RDBMS preserves the
full capacity for OLTP workloads and an IMCS cluster is deeply
integrated to accelerate query processing. The columnar data is
extracted from the row store, hot data resides in IMCS and cold
data will be evicted to disk. For instance, MySQL Heatwave [31]
combines a MySQL database with a distributed IMCS cluster, called
Heatwave, to enable real-time analytics. Transactions are fully exe-
cuted in the MySQL database. Columns that are frequently accessed
will be loaded into the Heatwave. When a complex query comes in,
it can be pushed down to the IMCS engine for query acceleration.
(d) Primary Column Store+Delta Row Store. This category
of databases utilizes primary column store as the basis for OLAP,
and handles OLTP with a delta row store. The in-memory delta-
main HTAP databases store the whole data in the main column
store. Data updates are appended to the row-based delta store.
The OLAP performance is high as the column store is highly read-
optimized. However, since there is only a delta row store for OLTP
workloads, the OLTP scalability is low. A representative is SAP
HANA [14, 43]. It divides the in-memory data store into three layers:
L1-delta, L2-delta, and Main. The L1-delta keeps data updates in
a row-wise format. When the threshold is reached, the data in L1-
delta is appended to L2-delta. The L2-delta transforms the data into
columnar data, then merges the data into the main column store.
Finally, the columnar data is persisted to the disk storage.

2.2 HTAP Techniques
As shown in Table 2, we summarize five task types of HTAP tech-
niques, including (1) transaction processing; (2) analytical process-
ing; (3) data synchronization; (4) query optimization; and (5) re-
source scheduling. These key techniques are adopted by the state-
of-the-art HTAP databases. Nevertheless, they have pros and cons
concerning various metrics, e.g., efficiency, scalability, and fresh-
ness. At the end of the section, we review other related HTAP
techniques that complement the key techniques.
(1) Transaction Processing (TP) Techniques. OLTP workloads
in HTAP databases are handled over the row store, but different
architectures result in disparate TP techniques. It mainly consists
of two types. The first type is (i) MVCC+logging [19, 20, 31, 39, 43]

Tutorial SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2485

Table 2: An Overview of HTAP Techniques

Task Type Key Techniques HTAP Databases/Prototypes Pros Cons

Transaction
Processing

MVCC+ Logging
Oracle Dual-Format[19]

SQL Server[20], DB2 BLU[39]
MySQL Heatwave[31], SAP HANA[43]

High Efficiency Low Scalability

2PC+Raft+Logging TiDB[18] High Scalability Low Efficiency

Analytical
Processing

In-Memory Delta and Column Scan
Oracle Dual-Format[19]

SQL Server[20], DB2 BLU[39]
MySQL Heatwave[31], SAP HANA[43]

High Freshness Large Memory Size

Log-based Delta and Column Scan TiDB[18] High Scalability Low Freshness
Column Scan SingleStore[44] High Efficiency Low Freshness

Data
Synchronization

In-Memory Delta Merge
Oracle Dual-Format[19]

SQL Server[20], DB2 BLU[39]
MySQL Heatwave[31], SAP HANA[43]

High Efficiency Low Scalability

Log-based Delta Merge TiDB[18] High Scalability High Merge Cost
Rebuild from Primary Row Store SingleStore[44], Oracle Dual-Format[19] Small Memory Size High Load Cost

Query
Optimization

In-Memory Column Selection Oracle 21c [33], MySQL Heatwave[31] High Memory Utility Low AP Throughput
Hybrid Row/Column Scan TiDB[18], SQL Server[13, 20] High AP Throughput Large Search Space

CPU/GPU Acceleration for HTAP RateupDB [22], Caldera [5] High AP Throughput Low TP Throughput
Resource
Scheduling

Freshness-driven scheduling for HTAP RDE [40] High Freshness Low Throughput
Workload-driven scheduling for HTAP SAP HANA[43], Siper[45] High Throughput Low Freshness

that relies on MVCC protocols and logging techniques to process
the transactions. Specifically, each insert is first written to the log
and the row store, then is appended to the in-memory delta store.
An update creates a new version of a row with a new lifetime
of a begin timestamp and an end timestamp, the older version is
marked as a delete row in a delete bitmap. As a result, the transac-
tion processing is efficient as the DML operations are performed
in memory. Note that some approaches may write data to either
the row store [44] or the delta row store [43], and they may only
write log when the transaction is committing [12, 20]. The second
type is (ii) 2PC+Raft+logging [18] that relies on distributed archi-
tecture (b) introduced in Section 2.1. It provides high scalability
with distributed transaction processing. The ACID transactions are
processed on the distributed nodes with a 2-phase commit (2PC)
protocol, a Raft-based consensus algorithm, and the write-ahead
log (WAL) technique. Particularly, the leader node receives the re-
quest from the SQL engine, then appends logs locally and sends
logs to follower nodes asynchronously. If the majority of nodes, i.e.,
the quorum, successfully append the logs, the leader commits the
request and applies it locally. Compared to the first type, the second
type has low efficiency due to distributed transaction processing.
(2) Analytical Processing (AP) Techniques. For HTAP databases,
OLAP workloads are performed using column-oriented techniques
such as aggregations over compressed data and single-instruction
multiple-data (SIMD) instructions [39, 43]. Particularly, they are
divided into three types. The first type is (i) in-memory delta and
column scan [19, 20, 31, 39, 43]. This line of work scans the in-
memory delta and columnar data together as the delta store may
include the updated records that have not been merged to the
column store. Since it has scanned the recently visible delta tuples
in memory, the data freshness is high for OLAP. The second type is
(ii) log-based delta and column scan [18] that scans the log-based
delta data and the columnar data together for incoming queries.
Similar to the first type, the second type scans the latest delta with
the column store for handling OLAP. However, such a process is
more expensive due to reading the delta files that may have not
been merged. Consequently, the data freshness is low due to the

high latency of shipping and merging the delta files. The third type
is (iii) column scan [44], which only scans the columnar data for
high efficiency as there is no overhead of reading any delta data.
However, this technique leads to low freshness when the data is
frequently updated in the row store.
(3) Data Synchronization (DS) Techniques. Since reading the
delta data in query time is expensive, it is necessary to periodically
merge the delta data to the main column store. There are three
kinds of DS techniques for various HTAP databases. Namely, (i) in-
memory delta merge [19, 20, 31, 39, 43]; (ii) disk-based delta merge
[18]; and (iii) rebuild from primary row store [19, 39]. The first
category periodically merges the newly-inserted in-memory delta
data to the main column store. Several techniques are introduced to
optimize the merge process, including the two-phase transaction-
based data migration [20], the dictionary-encoded sorting merge
[43], and threshold-based change propagation [19, 31, 39]. The
second category [18] merges the disk-based delta files to the main
column store. To speed up themerging process, the delta data can be
indexed by a B+-tree, thus the delta items can be efficiently located
with key lookups [18]. The third category rebuilds the in-memory
column store from the primary row store [19, 44]. This is typical
for the case that the delta updates exceed a certain threshold, thus
it is more efficient to rebuild the column store than merging these
updates with a large memory footprint [19].
(4) Query Optimization Techniques.We introduce three aspects
of query optimization techniques, including (i) column selection
for HTAP [31, 33]; (ii) hybrid row/column scan [18, 20]; and (iii)
CPU/GPU acceleration for HTAP [5, 22]. The first type [31, 33] re-
lies on history workload and statistics to select frequently-accessed
columns extracted from the primary store into memory. Thus, a
query can be pushed down to the in-memory column store for
acceleration. The downside is that the columns for a new query
may have not been selected, leading to row-based query process-
ing. Existing approaches rely on history workload’s access pattern
[31, 33] to load the hot data and evict the cold data. The second
type [18, 20] utilizes hybrid row/column scan to accelerate a query.

Tutorial SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2486

With such techniques, a complex query can be decomposed to
perform either over the row store or over the column store, then
the results are combined. This is typical for an SPJ query that can
be executed with a row-based index scan and a complete column-
based scan. We introduce the cost-based approach [18, 20] to select
the hybrid row/column access path. The third type of techniques
[5, 22] leverages heterogeneous CPU/GPU architecture to accel-
erate HTAP workloads. These techniques utilize the task-parallel
nature of CPUs and the data-parallel nature of GPUs for handling
OLTP and OLAP, respectively. Nevertheless, such techniques favor
high OLAP throughput while having low OLTP throughput.
(5) Resource Scheduling Techniques. For HTAP databases, re-
source scheduling refers to resource allocation for OLTP and OLAP
workloads. Existing techniques [40, 43, 45] dynamically control
the execution mode of OLTP and OLAP workloads for better re-
source utilization. There are two types of scheduling techniques, the
workload-driven approaches [43, 45] and the freshness-driven ap-
proach [40]. The former one adjusts the parallelism threads of OLTP
and OLAP tasks based on the performance of executed workloads.
For example, when CPU resource is saturated by OLAP threads,
the task scheduler can decrease the parallelism of OLAP while
enlarging the OLTP threads. The latter one [40] switches the exe-
cution modes on resource allocation and data exchange for OLTP
and OLAP. For instance, the scheduler controls the execution of
OLTP and OLAP in isolation for high throughput, then periodically
synchronizes the data. Once the data freshness becomes low, it
switches to an execution mode with shared CPU, memory and data.
Other HTAP-related techniques. We also review (i) new HTAP in-
dexing techniques [41, 46] and (ii) scale-out techniques[17, 19].

2.3 HTAP Benchmarks
We present existing benchmarks [11, 48, 49] and evaluation prac-
tices [13, 38, 40, 42, 45] on HTAP databases.
(1) HTAP Benchmarks. A widely-used end-to-end HTAP bench-
mark is CH-benchmark [11] that combines two TPC benchmarks,
i.e., TPC-C [48] for transactional workloads, TPC-H [49] for analyt-
ical workloads. Another end-to-end benchmark, called HTAPBench
[10], also combines TPC-C and TPC-H, but proposes a different met-
ric. We will compare HTAPBench with CH-benchmark concerning
data generation, execution rule, and performance metrics. For data
generation, we study how they scale the original data generator.
For the execution rule, we present how they control the concurrent
execution of OLTP and OLAP workloads with benchmark parame-
ters. For performance metrics, we introduce how they combine the
metrics of transactions per minute (tpmC) and completed queries
per hour (QphH). In addition to the end-to-end benchmarks, we
will introduce two synthetic micro-benchmarks [6, 7].
(2) HTAP Database Evaluation. We summarize the gained in-
sights from existing evaluation practices on HTAP databases [13,
38, 40, 42, 45]. Particularly, we study the trade-offs that HTAP sys-
tems made for handling the OLTP and OLAP workloads. We will
present quantified numbers to shed some light on how different
HTAP databases perform in various situations. For example, to
strike the trade-off between workload isolation and data freshness,
we compare what percentage of performance degradation the sys-
tems should pay in order to maintain the data freshness.

2.4 Challenges and Open Problems
Automatic Column Selection for HTAPWorkload. Given an
HTAP workload, selecting which columns into the in-memory
column store from the row store is an important task. However,
existing methods rely heavily on the historical statistics to select
the columns into memory, e.g., Oracle 21c’s Heatmap [33]. Such
methods make the recommendation by running all the queries, thus
are expensive and inflexible. Recently, learning-based methods [24]
have been widely used in the database field, including knob tuning
[25, 54], join ordering [50], and view selection[51]. Therefore, it
calls for new automatic methods to efficiently and effectively select
the columns for HTAP workloads. The main challenge is to design a
lightweight learned method that can capture the access patterns of
workloads without executing the entire workload in the database.
In addition, it is challenging to take into account the data encoding
together, which leads to a larger search space.
Learned HTAP Query Optimizer. Existing methods [13, 18] op-
timize the query by leveraging cost functions to select the access
path of row store and column store in an HTAP database. How-
ever, they make uniform and independent assumptions to estimate
the row/column size, then use such estimates to measure the scan
cost for row store and column store. Such methods are problematic
for correlated and skewed data due to inaccurate cost estimates.
Recently, learned query optimizers [27, 28] have shown practical
gains by learning a mapping between an incoming query and the
execution strategy from the existing optimizer. Therefore, it is also
promising to develop a learned query optimizer for HTAP databases.
The main challenge is to consider both the row-based and column-
based operators in the learning phase as the learning space is large.
Adaptive HTAP Resource Scheduling. HTAP resource sched-
uling helps databases to balance the trade-off between workload
isolation and data freshness. This is achieved by adjusting the ex-
ecution modes of OLAP and OLTP. Isolated execution of OLAP
and OLTP workloads favors high throughput but has a low data
freshness. Shared execution of mixed workloads favors a high data
freshness but has strong workload interference. Exiting freshness-
driven scheduling [40] relies on a rule-based approach to control the
execution mode but neglects the workload pattern. The workload-
driven approach [43, 45] adjusts the threads of OLTP and OLAP but
does not consider the freshness. Thus, it is important to consider
both workload and freshness when scheduling the resources. To
this end, it is preferable to develop a lightweight adaptive schedul-
ing method that not only captures the workload pattern for better
performance, but also satisfies the requirement of data freshness.
HTAP Benchmark Suite. First, it has been pointed out [8, 23]
that TPC-H has a uniform distribution with little correlation across
columns, posing a little challenge on testing OLAP. Thus, HTAP
benchmarks with TPC-H should incorporate the join-crossing cor-
relation with skew into the benchmark. Second, Gartner has defined
[34, 35] HTAP transaction could contain analytical operations. How-
ever, this feature is still not introduced in any HTAP benchmark.
Therefore, it calls for a new HTAP benchmark with analytical op-
erations, e.g., insert analytical operations to TPC-C. Third, there is
a dearth of specific micro-benchmarks for HTAP tasks, e.g., data
synchronization, query optimization, and resource scheduling. All

Tutorial SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2487

in all, it calls for a new testbed that can extend various components
of existing benchmarks for a holistic evaluation of HTAP databases.

3 BIOGRAPHY
Guoliang Li is a full professor at the Department of Computer Sci-
ence, Tsinghua University. His research interests include database
systems, large-scale data cleaning and integration. He got VLDB
2017 early research contribution award and TCDE 2014 early career
award. He will present HTAP databases and open problems.
Chao Zhang is a postdoctoral researcher at Tsinghua University.
He received his PhD degree from University of Helsinki, Finland.
His research interests focus on database management systems. He
will present the HTAP techniques and benchmarks.

4 ACKNOWLEDGEMENT
This paper was supported by NSF of China (61925205), Huawei, TAL
education, and Beijing National Research Center for Information
Science and Technology (BNRist).

REFERENCES
[1] Apache Cassandra. Apache Cassandra– An Open Source NoSQL Distributed

Database, 2021.
[2] Apache HBase. A Distributed, Scalable, Big Data Store., 2021.
[3] Apache Hive. A Data Warehouse using SQL., 2021.
[4] Apache Impala. An Open Source, Native Analytic Database for Hadoop., 2021.
[5] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki. The Case For

Heterogeneous HTAP. In CIDR, 2017.
[6] J. Arulraj, A. Pavlo, and P. Menon. Bridging the Archipelago between Row-stores

and Column-stores for Hybrid Workloads. In SIGMOD, pages 583–598, 2016.
[7] M. Athanassoulis, K. S. Bøgh, and S. Idreos. Optimal Column Layout for Hybrid

Workloads. Proceedings of the VLDB Endowment, 12(13):2393–2407, 2019.
[8] P. Boncz, A.-C. Anatiotis, and S. Kläbe. JCC-H: Adding Join Crossing Correlations

with Skew to TPC-H. In Technology Conference on Performance Evaluation and
Benchmarking, pages 103–119. Springer, 2017.

[9] M. Bouzeghoub. A Framework for Analysis of Data Freshness. In International
workshop on Information quality in information systems, pages 59–67, 2004.

[10] F. Coelho, J. Paulo, R. Vilaça, J. Pereira, and R. Oliveira. HTAPBench: Hybrid
Transactional and Analytical Processing Benchmark. In Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering, pages 293–
304, 2017.

[11] R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper, S. Krompass, H. Kuno,
R. Nambiar, T. Neumann, M. Poess, et al. The Mixed Workload CH-benCHmark.
In Proceedings of the Fourth International Workshop on Testing Database Systems,
pages 1–6, 2011.

[12] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher,
N. Verma, and M. Zwilling. Hekaton: SQL Server’s Memory-Optimized OLTP
Engine. In SIGMOD, pages 1243–1254, 2013.

[13] A. Dziedzic, J. Wang, S. Das, B. Ding, V. R. Narasayya, and M. Syamala. Column-
store and B+ tree-Are Hybrid Physical Designs Important? In SIGMOD, pages
177–190, 2018.

[14] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and J. Dees. The SAP
HANA Database–An Architecture Overview. IEEE Data Eng. Bull., 35(1):28–33,
2012.

[15] D. Feinberg. Setting the Record Straight – HTAP OPDBMS, 2018.
[16] B. Gallet and M. Gowanlock. Heterogeneous CPU-GPU epsilon grid joins: Static

and dynamic work partitioning strategies. Data Sci. Eng., 6(1):39–62, 2021.
[17] A. K. Goel, J. Pound, N. Auch, P. Bumbulis, S. MacLean, F. Färber, F. Gropengiesser,

C. Mathis, T. Bodner, and W. Lehner. Towards Scalable Real-Time Analytics:
An Architecture for Scale-Out of OLxP Workloads. Proceedings of the VLDB
Endowment, 8(12):1716–1727, 2015.

[18] D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen, L. Tang, Y. Zhou,M. Huang,
et al. TiDB: A Raft-based HTAP Database. Proceedings of the VLDB Endowment,
13(12):3072–3084, 2020.

[19] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson, S. Hase, A. Hol-
loway, J. Kamp, T.-H. Lee, et al. Oracle Database In-Memory: A Dual Format
In-Memory Database. In 2015 IEEE 31st International Conference on Data Engi-
neering, pages 1253–1258. IEEE, 2015.

[20] P.-Å. Larson, A. Birka, E. N. Hanson, W. Huang, M. Nowakiewicz, and V. Papadi-
mos. Real-Time Analytical Processing with SQL Server. VLDB, 8(12):1740–1751,
2015.

[21] J. Lee, S. Moon, K. H. Kim, D. H. Kim, S. K. Cha, andW.-S. Han. Parallel Replication
across Formats in SAP HANA for Scaling Out Mixed OLTP/OLAP workloads.
VLDB, 10(12):1598–1609, 2017.

[22] R. Lee, M. Zhou, C. Li, S. Hu, J. Teng, D. Li, and X. Zhang. The Art of Balance: A
RateupDB Experience of Building a CPU/GPU Hybrid Database Product. VLDB,
14(12):2999–3013, 2021.

[23] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How
Good Are Query Optimizers, Really? VLDB, 9(3):204–215, 2015.

[24] G. Li, X. Zhou, and L. Cao. AI Meets Database: AI4DB and DB4AI. In SIGMOD,
pages 2859–2866, 2021.

[25] G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A Query-Aware Database Tuning System
with Deep Reinforcement Learning. VLDB, 12(12):2118–2130, 2019.

[26] G. Li, X. Zhou, J. Sun, X. Yu, Y. Han, L. Jin, W. Li, T. Wang, and S. Li. opengauss:
An autonomous database system. Proc. VLDB Endow., 14(12):3028–3041, 2021.

[27] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making
Learned Query Optimization Practical. In SIGMOD, pages 1275–1288, 2021.

[28] R. C. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaem-
manouil, and N. Tatbul. Neo: A Learned Query Optimizer. VLDB, 12(11):1705–
1718, 2019.

[29] MariaDB. Deploy an HTAP Server with MariaDB ColumnStore 5.5 and Commu-
nity Server 10.6, 2021.

[30] A. McAfee, E. Brynjolfsson, T. H. Davenport, D. Patil, and D. Barton. Big Data:
The Management Revolution. Harvard business review, 90(10):60–68, 2012.

[31] MySQL Heatwave. Real-time Analytics for MySQL Database Service, 2021.
[32] T. Neumann, T. Mühlbauer, and A. Kemper. Fast Serializable Multi-Version

Concurrency Control for Main-Memory Database Systems. In SIGMOD, pages
677–689, 2015.

[33] Oracle 21c. Automating Management of In-Memory Objects., 2021.
[34] F. Özcan, Y. Tian, and P. Tözün. Hybrid Transactional/Analytical Processing: A

Survey. In SIGMOD, pages 1771–1775, 2017.
[35] M. Pezzini, D. Feinberg, N. Rayner, and R. Edjlali. Hybrid Transaction/Analytical

Processing Will Foster Opportunities For Dramatic Business Innovation. Gartner
(2014, January 28), pages 4–20, 2014.

[36] M. Pezzini, D. Feinberg, N. Rayner, and R. Edjlali. Real-time Insights and De-
cision Making using Hybrid Streaming, In-Memory Computing Analytics and
Transaction Processing. 2016.

[37] PolarDB. PolarDB HTAP Real-Time Data Analysis Technology Decryption, 2021.
[38] I. Psaroudakis, F. Wolf, N. May, T. Neumann, A. Böhm, A. Ailamaki, and K.-U.

Sattler. Scaling Up Mixed Workloads: A Battle of Data Freshness, Flexibility, and
Scheduling. In Technology Conference on Performance Evaluation and Benchmark-
ing, pages 97–112. Springer, 2014.

[39] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy,
J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, et al. DB2 with BLU Acceleration:
So Much More Than Just A Column Store. VLDB, 6(11):1080–1091, 2013.

[40] A. Raza, P. Chrysogelos, A. C. Anadiotis, and A. Ailamaki. Adaptive HTAP
Through Elastic Resource Scheduling. In SIGMOD, pages 2043–2054, 2020.

[41] C. Riegger, T. Vinçon, R. Gottstein, and I. Petrov. MV-PBT: Multi-Version Indexing
for Large Datasets and HTAP Workloads. In EDBT, pages 217–228, 2020.

[42] S. Shen, R. Chen, H. Chen, and B. Zang. Retrofitting High Availability Mechanism
to Tame Hybrid Transaction/Analytical Processing. In OSDI, pages 219–238, 2021.

[43] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd. Efficient
Transaction Processing in SAP HANA Database: The End of A Column Store
Myth. In SIGMOD, pages 731–742, 2012.

[44] SingleStore. The Single Database for All Data-Intensive Applications, 2021.
[45] U. Sirin, S. Dwarkadas, and A. Ailamaki. Performance Characterization of HTAP

Workloads. In ICDE, pages 1829–1834. IEEE, 2021.
[46] Y. Sun, G. E. Blelloch, W. S. Lim, and A. Pavlo. On Supporting Efficient Snapshot

Isolation for Hybrid Workloads with Multi-Versioned Indexes. VLDB, 13(2), 2019.
[47] B. Tran, B. Schaffner, J. M. Myre, J. Sawin, and D. Chiu. Exploring means to

enhance the efficiency of GPU bitmap index query processing. Data Sci. Eng.,
6(2):209–228, 2021.

[48] Transaction Processing Performance Council. TPC-C, 2021.
[49] Transaction Processing Performance Council. TPC-H, 2021.
[50] X. Yu, G. Li, C. Chai, and N. Tang. Reinforcement Learning with Tree-LSTM for

Join Order Selection. In ICDE, pages 1297–1308. IEEE, 2020.
[51] H. Yuan, G. Li, L. Feng, J. Sun, and Y. Han. Automatic View Generation with

Deep Learning and Reinforcement Learning. In ICDE, pages 1501–1512, 2020.
[52] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster

computing with working sets. HotCloud, 10(10-10):95, 2010.
[53] C. Zhang, J. Lu, P. Xu, and Y. Chen. UniBench: A Benchmark for Multi-Model

Database Management Systems. In TPCTC, volume 11135 of Lecture Notes in
Computer Science, pages 7–23. Springer, 2018.

[54] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang, T. Cheng,
L. Liu, et al. An End-To-End Automatic Cloud Database Tuning System Using
Deep Reinforcement Learning. In SIGMOD, pages 415–432, 2019.

[55] X. Zhou, C. Chai, G. Li, and J. Sun. Database meets artificial intelligence: A survey.
IEEE Trans. Knowl. Data Eng., 34(3):1096–1116, 2022.

Tutorial SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2488

	Abstract
	1 Introduction
	2 Tutorial Outline
	2.1 HTAP Databases
	2.2 HTAP Techniques
	2.3 HTAP Benchmarks
	2.4 Challenges and Open Problems

	3 Biography
	4 Acknowledgement
	References

