
Software Engineering

Lecture 2,3(a):
Type hierarchy design
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Outline

(A) Basic class design with annotation

(B) Collection class design with annotation

(C) Design validation & Coding

(D) Type hierarchy

Lect 1(a,b)

Lect 1(c)

Lect 2,3a
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References

● Liskov and Guttag (2000), Chapters 6, 7
● Java language specification:

– esp. the annotation feature

https://docs.oracle.com/javase/tutorial/java/annotations/
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Design Method (recap)

(UML class diagram: https://www.uml-diagrams.org/class-diagrams-overview.html)

https://www.uml-diagrams.org/class-diagrams-overview.html
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(D) Type hierarchy

1) Type hierarchy review
2) Design approach with annotation
3) Coding
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Type hierarchy review
● Why type hierarchy?

– Similarities exist among types that require a higher 
level of abstraction...
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Example: vehicles

Car

P

...

Bus Air-
plane
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Example: vehicles (2)

P

Car ...

Bus Air-
plane
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Example: vehicles (3)

P

Car ...

Bus Air-
plane
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Example: vehicles (4)

P

Car

...

Bus Air-
plane

?
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What is a type hierarchy?

● A product of type abstraction
● A hierarchy of types in which higher-level 

types are abstractions of lower-level ones
– a higher-level type is a super-type (supertype)
– a lower-level type is a sub-type (subtype)
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Benefits

● Enhance ability to solve real world problems:
– type hierarchies exist in real world application domains
– Can you name other examples?

● Program modifiability: 
– multiple implementations of a type
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One-level TH example: vehicles

Vehicle

Bus Car ...
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Two-level TH: vehicles

Vehicle

Road
Vehicle ...

Bus Car ... Airplane “IronMan”

Air
Vehicle

Space
shuttle
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ExceptionError

Throwable

Runtime
Exception

...

...
(Checked exceptions)

(Unchecked exceptions)

java.lang Multi-level TH: 
exceptions
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What about multiple super types?

● A subtype can have more than one supertypes
● In Java:

– only one super type is class, others must be interfaces
– class: specification and code
– interface: specification only
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Interface example

● Interface PriorityObject represents objects 
with priorities
– priority is determined based on the object 

dimension (width, length, height)

Vehicle

Bus Car

PriorityObject

<<implements>>
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Example: List TH

● List is a sequence of elements
● Two basic orders:

– insertion
– sorted: ascending or descending

● Java interface: java.util.List
● Two subtypes: 

– ArrayList
– LinkedList
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List TH
● Includes both classes and interfaces

Abstract
CollectionQueue

LinkedList

Collection

AbstractList

List

ArrayList

<<interface>>

Vector
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Design concepts

● Inheritance
● Subtypes with more specialised abstract 

properties
● Subtypes typically override certain supertype's 

behaviour
– abstraction by specification

● Subtypes can have new attributes
● Subtypes can have new behaviour
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Inheritance

● Subtypes inherit attributes and operations of the 
supertype and all ancestors (except 
constructors):
– benefit: code re-use

● Sub-types must define constructors that they 
wish to use:
– but must invoke suitable supertype constructor(s) if 

not the default
● Objects of the subtypes must not violate 

properties associated to the attributes:
– see properties rule later
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Example: Vehicle

- name: String
- width: double
- height: double
- length: double
- weight: double
- seatingCapacity: int

+ Vehicle(String, double, double, double, double, int)
+ getName(): String
+ setName(String)
+ calcTotalWeight(): double
+ repOK(): boolean
+ toString(): String
- validate(String, double, double, double, double, c): boolean
- validateName(String): boolean
- validateDimension(double): boolean
# validateWeight(double w): boolean
# validateSeatingCapacity(int c): boolean

Vehicle

Setters/
getters 
of other 
attributes

are omitted
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Vehicle's abstract properties

Attributes Formal 
type Mutable Optional Min Max Length

name String T F - - 100
width Double T F 0+ - -
height Double T F 0+ - -
length Double T F 0+ - -
weight Double T F 0+ - -
seating 
Capacity

Integer T F 0+ - -
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Bus and Car inherit Vehicle

- name: String
- width: double
- height: double
- length: double
- weight: double
- seatingCapacity: int

+ Vehicle(String, double, double, double, double, int)
...

Vehicle

+ Bus(String, double, double, double, double, int)

Bus

+ Car(String, double, double, double, double, int)

Car
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Subtypes with specialised 
abstract properties

● A subtype can have more "restricted" properties 
concerning one or more attributes that it inherits

● Example: 
– Bus and Car both have tighter restrictions on 

attributes weight and seatingCapacity
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Example: Bus's & Car's restrictions 
on weight

Attributes Formal 
type Mutable Optional Min Max Length

name String T F - - 100
... ... ... ... ... ... ...

weight Double T F

for Vehicle
0+ - -

for Bus
5000 - -

for Car
- 2000 -

... ... ... ... ... ... ...
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Operation/Method overriding

● When to override a method in a subtype?
● To take into account:

● subtype's type information (e.g. type name)
● subtype's abstract properties
● subtype's behaviour

● Example: 
– Bus and Car have specialised properties concerning 

weight and seating capacity
– Bus and Car have different engine-ignition behaviours
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Vehicle TH: overriding methods

- name: String
- width: double
- height: double
- length: double
- weight: double
- seatingCapacity: int

+ Vehicle(String, double, double, double, double, int)
...
+ toString(): String
# validateWeight(double w): boolean
# validateSeatingCapacity(int c): boolean

Vehicle

+ Bus(String, double, double, double, double, int)
+ toString(): String
# validateWeight(double w): boolean
# validateSeatingCapacity(int c): double

Bus

+ Car(String, double, double, double, double, int)
+ toString(): String
# validateWeight(double w): boolean
# validateSeatingCapacity(int c): double

Car
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Subtype with additional attributes

● A subtype can have additional attributes that 
are specific to it

● These attributes would require adding new 
operations

● Example:
– Bus: has routes
– Car: has owner name
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Example: 
Vehicle TH

- routes: int[]

Bus

- owner: String

Car

- name: String
- width: double
- height: double
- length: double
- weight: double
- seatingCapacity: int

...

Vehicle
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Subtype with additional behaviour

● Subtype can have additional operations that 
serve it’s specific purpose

● These operations may be related to additional 
attributes that it has

● Example: 
– Car.openTheTrunk(): 

● open the cargo trunk at the back of the car
– Bus.raiseStopBell():

● (for passenger) to request the bus to stop at the next 
station
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The meaning of subtype: 
substitution principle

● Substitution principle: "supertype can be used in 
place of its subtypes" 

● That is, objects of a subtype can be assigned to 
a variable declared with the supertype:
– supertype is the apparent type of the variable
– subtype is the actual or run-time type of the variable
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super type 
variables are 

assigned 
to subtype 

objects

// create objects

Vehicle v = new Bus("b1",3.0,3.0,10.0,6000,40);
// use objects

System.out.println("Vehicle " + v.getName() + 

 ", weight: " + v.calcTotalWeight());

// some time later...

v = new Car("c1",1.5,1.5,2.5,1500,4);

Example: Substitution principleCode
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Design approach
● Specify a supertype with common behaviour
● Specify each subtype relative to the supertype:

– specialise the abstract properties based supertype’s
– use extends or implements keyword
– specify new or overriding behaviour
– (if needed) specify new attributes

● Use annotations to define the specialised features:
– @DomainConstraint
– @DOpt, @AttrRef
– @Override
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Qualities of subtype specification

● Conform to the substitution principle:
● header rule: operation header conform to 

supertype’s operation
● methods rule: operation’s behaviour must be 

consistent with supertype’s operation
● properties rule: must not violate the supertype's  

properties
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Class/interface rules

● Supertype/subtype → class or interface
● Object is the (root) supertype of all types

– need not be specified
● Interface only has specifications
● Interface can only be a subtype of another 

interface
● Class can be a subtype of:

● one class and/or
● multiple interfaces
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Specialise the abstract properties

● Given a supertype named Super and an 
attribute A, the following is a specialisation of 
the abstract properties of A in a subtype:
P_Super.A         ⋀ F(A)

Super's
property 

on attribute A
(inherited)

Subtype's further 
restriction 

on A
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Example: Bus's restriction on weight

●  P_Vehicle.weight  ⋀ min(weight) = 5000

Vehicle's property 
on weight
(inherited)

Bus's further 
restriction 
on weight



Duc M. L. Software Engineering 39

Car's restriction on weight

●  P_Vehicle.weight  ⋀ max(weight) = 2000

Vehicle's property 
on weight
(inherited)

Car's further 
restriction 
on weight
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Using DomainConstraint to realise 
property specialisation 

● We can specify in a subtype a DomainConstraint for a 
property specialisation

● But NOT in the usual way (that is to attach it to an 
attribute):
– Why? because the attribute is not available in the subtype!

● The solution involves two parts:
– define an overriding method in the subtype that overrides a 

supertype's method concerning the attribute (e.g. data validation 
or observer method)

– attach a DomainConstraint to this overriding method
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Example: validateWeight

...

# validateWeight(double w): boolean

Vehicle

...
# validateWeight(double w): boolean

Bus

...
# validateWeight(double w): boolean

Car

@DomainConstraint{
 type="Double",
 mutable=true,
 optional=false,
 min=5000
}

@DomainConstraint{
 type="Double",
 mutable=true,
 optional=false,
 max=2000
}
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Specify the overriding methods

● An overriding method in the subtype must 
satisfy two rules w.r.t overriden method:
– header rule
– methods rule

● Annotated with @Override
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Header rule
● Overriding method must be header compatible with 

the overriden method
● Method header includes:

– signature: method name, number and types of 
parameters (also means their order)

– return type
– thrown exceptions: (details next lecture)

● Compatibility means:
– same signature
– return type: same (Jdk < 1.4) or subtype (>= 1.5)
– exceptions: (details next lecture)
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Example: validateWeight

...

# validateWeight(double w): boolean

Vehicle

...
# validateWeight(double w): boolean

Bus

...
# validateWeight(double w): boolean

Car
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What about these methods?

+ validateWeight(float w): boolean

+ validateWeight(double w): int

+ validateW(double w): boolean

+ validateWeight(double w)

+ validateWeight(): boolean

?Are these correct overriding methods
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Methods rule

● Pre-condition (@requires) is the same or weaken:
– Presuper  → Presub

● Post-condition (@effects) is the same or strengthen:
– (Presuper  ⋀ Postsub) → Postsuper
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Example: Bus.validateWeight (1)

...

# validateWeight(double w): boolean

Vehicle

...
# validateWeight(double w): boolean

Bus

/**
 * @effects
 *   if w is valid 
 *     return true 
 *   else 
 *     return false 
 */

/**
 * @effects
 *   if w is valid 
 *     return true 
 *   else 
 *     return false 
 */
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Vehicle and Bus properties 
w.r.t weight

● Vehicle properties w.r.t weight 
(P_Vehicle.weight): 

mutable(weight)=true  ⋀
optional(weight)=false  ⋀
min(weight)=0+
● Bus properties w.r.t weight:
 P_Vehicle.weight  ⋀ min(weight) = 5000
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Example: Bus.validateWeight (2)
● PreVehicle → PreBus:

true because both are empty
● (PreVehicle ⋀ PostBus) → PostVehicle:

PostVehicle = P_Vehicle.weight.

PreVehicle = true.

PostBus = P_Vehicle.weight  min(weight)=5000⋀
→ P_Vehicle.weight.
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Specification Example: Vehicle

ch7.vehicles.Vehicle
● Note:

● property statements are easy to code directly
● constant DomainConstraint.ZERO_PLUS 
● two validation methods are declared protected:

– validateWeight
– validateSeatingCapacity

Spec
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Bus

ch7.vehicles.Bus
● Note:

● P_Vehicle: abstract properties of Vehicle
● abstract properties = Vehicle's + two new 

constraints on weight and seatingCapacity
– constructor is redefined (not inherited)
● override two protected validation methods:

– validateWeight
– validateSeatingCapacity

Spec
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Car

ch7.vehicles.Car
● Note:

● Car is specified in a similar manner, except for the 
constraints on weight and seatingCapacity

Spec
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Interface

● Unlike class, interface only contains abstract 
operations:
– abstract operation: no code body
– operations are non-static and (by default) public

● Classes that implement an interface must 
provide code for the operations

● A simplified solution for multiple inheritance in 
OOPL:
– a class extends (exactly) one class and implements 

several interfaces
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Interface example: 
Bus implements PriorityVehicle

Vehicle

Bus Car

PriorityObject

<<implements>>

+ comparePriorityTo(pv: Vehicle): int

PriorityObject
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PriorityVehicle

ch7.vehiclesintf
.PriorityObject
.Bus

● Note:
● Bus uses the implements keyword

Spec
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Java’s interfaces for sorting:
Comparable and Comparator

java.lang.Comparable
java.util.Comparator

1) What are they used for?
2) What operation(s) must a class implement?
3) Update class Vehicle to implement the 
Comparable interface:

● to compare Vehicle objects based their names

4)* How do you design Vehicle to support both 
ASC and DESC sorting orders?

EXer
cise

https://docs.oracle.com/javase/8/docs/api/index.html?overview-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
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Coding a TH in Java

● Keyword super refers to supertype's members
– can access protected members  of super

● Implementation can be full or partial
– abstract class is partial (later)

● Overriding repOK must invoke super.repOK
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Vehicle

ch7.vehicles.Vehicle
● Note:

● repOK invokes validate
● toString uses Vehicle prefix

Code
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Bus

ch7.vehicles.Bus
● Note:

● constructor invokes super constructor
● toString uses Bus prefix
● validation methods check against the min values

Code
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Car

ch7.vehicles.Car
● Note:

● constructor invokes super constructor
● toString uses Car prefix
● validation methods:

– invoke super's validation methods and 
– check against the max values

Code
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PriorityVehicle

ch7.vehiclesintf
.PriorityObject
.Bus

● Note:
● Bus uses the implement keyword
● comparePriorityTo invokes other methods to 

get data

Code
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Subtypes with additional attributes

● Design specification of the subtype needs to 
take into account the additional attributes:
– class header specification: attributes, abstract 

properties
– constructors may need to take extra argument(s) 

(depending on the domain constraint(s))
– new operations may be needed, e.g. getter/setter
– supertype's operations may need to be overriden
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Example: 
Vehicle TH

- routes: int[]

+ Bus(String, double, double, double, double, int, int[])
+ getRoutes(): int[]
+ repOK(): boolean
+ toString(): String
# validateWeight(double w): boolean
# validateSeatingCapacity(int c): boolean
- validateRoutes(): boolean

Bus

- owner: String

+ Car(String, double, double, double, double, int)
+ setOwner(String)
+ getOwner(): String
+ repOK(): boolean
+ toString(): String
# validateWeight(double w): boolean
# validateSeatingCapacity(int c): boolean
- validateOwner(): boolean

Car

- name: String
- width: double
- height: double
- length: double
- weight: double
- seatingCapacity: int

+ Vehicle(String, double, double, double, double, int)
...
+ repOK(): boolean
+ toString(): String
…
# validateWeight(double w): boolean
# validateSeatingCapacity(int c): boolean

Vehicle
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Bus

ch7.vehiclesextra.Bus
● Note:

● abstract properties use function length over array
● constructor takes an extra argument
● getRoutes: return a copy of routes
● repOK: first invoke super's then invoke 
validateRoutes

● validateRoutes: validate routes against 
abstract properties
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Car

ch7.vehiclesextra.Car
● Note:

● abstract properties use function length over 
string

● setOwner: validate argument by invoking 
validateOwner before setting

● repOK: first invoke super's then invoke 
validateOwner

● validateOwner: validate owner against abstract 
properties
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Abstract class

● A super-type that cannot be instantiated
● though still have constructors

● Provides either partial or full implementation
● Partial implementation must contain abstract 

methods

?Which class in the Vehicle TH 
would be made abstract
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Collection type hierarchy

● Supertype: represents a more abstract collection
– e.g. List is an interface that represents all kinds of 

lists
● Subtype: represents a concrete implementation

– e.g. LinkedList, ArrayList implements List
● Abstract classes are used to provide a partial 

implementation of some interface
– contains shared operations

● Care should be taken when overriding the 
mutator-add and remove operations
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Example: Java’s List TH
● Includes both classes and interfaces

Abstract
CollectionQueue

LinkedList

Collection

AbstractList

List

ArrayList

<<interface>>

Vector
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Example: method overriding

IntSet

SortedIntSet

Vector

SortedIntVector
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Vector.add

/**
 * @effects appends o to the end of this
 */
public boolean add(Object o)
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SortedIntVector.add

/**
 * @effects <pre> if this is empty OR o is >= all elements 
 *                  of this
 *                  super.add(o)
 *                else
 *                  insert o at the position i in this s.t 
 *                    xk <= o for all 0 <= k <= i-1 and  
 *                    xj > o for all i+1 <= j < this.size
 *          </pre>
 */
public boolean add(Object o)

?Is this a correct overriding method
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IntSet.insert

  /**
   * @modifies  <tt>this</tt>
   * @effects   adds x to this, i.e.
   *            </tt>this_post = this + {x}</tt>
   */
  public void insert(int x)
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SortedIntSet.insert

?Is this a correct overriding method

  /**
   * @modifies  <tt>this</tt>
   * @effects   <pre>adds x to this, i.e. 
   *            this_post = this + {x}, 
   *            such that x is greater than all elements 
   *            before and smaller than all elements 
   *            after it</pre>
   */
  public void insert(int x)
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Dispatching
● A run-time mechanism to find the right object to 

execute a method
● Each object has a pointer to a dispatch vector
● Dispatch vector contains references to the 

object methods
● Method invocation is dispatched to the target 

implementation 
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Dispatching example

r
o

Stack Heap

< , “abc”>
equals

Code for 
String equals

< , “abc”>

Dispatch
vector

String t = "ab";
Object o = t + "c"; 
String r = "abc";
boolean b =  o.equals(r);
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Summary

● Type hierarchy is a product of type abstraction: 
generalise related types to create a more 
abstract type

● TH obeys the substitution principle
● A subtype can be a class or an interface

– inherite features
– can have new features (attributes, behaviours)
– can override behaviours

● Annotation helps make TH design rules explicit 
in the code 
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Q & A
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