
Software Engineering

Lecture 2,3(a):
Type hierarchy design

Duc M. L. Software Engineering 2

Outline

(A) Basic class design with annotation

(B) Collection class design with annotation

(C) Design validation & Coding

(D) Type hierarchy

Lect 1(a,b)

Lect 1(c)

Lect 2,3a

Duc M. L. Software Engineering 3

References

● Liskov and Guttag (2000), Chapters 6, 7
● Java language specification:

– esp. the annotation feature

https://docs.oracle.com/javase/tutorial/java/annotations/

Duc M. L. Software Engineering 4

Design Method (recap)

(UML class diagram: https://www.uml-diagrams.org/class-diagrams-overview.html)

https://www.uml-diagrams.org/class-diagrams-overview.html

Duc M. L. Software Engineering 5

(D) Type hierarchy

1) Type hierarchy review
2) Design approach with annotation
3) Coding

Duc M. L. Software Engineering 6

Type hierarchy review
● Why type hierarchy?

– Similarities exist among types that require a higher
level of abstraction...

Duc M. L. Software Engineering 7

Example: vehicles

Car

P

...

Bus Air-
plane

Duc M. L. Software Engineering 8

Example: vehicles (2)

P

Car ...

Bus Air-
plane

Duc M. L. Software Engineering 9

Example: vehicles (3)

P

Car ...

Bus Air-
plane

Duc M. L. Software Engineering 10

Example: vehicles (4)

P

Car

...

Bus Air-
plane

?

Duc M. L. Software Engineering 11

What is a type hierarchy?

● A product of type abstraction
● A hierarchy of types in which higher-level

types are abstractions of lower-level ones
– a higher-level type is a super-type (supertype)
– a lower-level type is a sub-type (subtype)

Duc M. L. Software Engineering 12

Benefits

● Enhance ability to solve real world problems:
– type hierarchies exist in real world application domains
– Can you name other examples?

● Program modifiability:
– multiple implementations of a type

Duc M. L. Software Engineering 13

One-level TH example: vehicles

Vehicle

Bus Car ...

Duc M. L. Software Engineering 14

Two-level TH: vehicles

Vehicle

Road
Vehicle ...

Bus Car ... Airplane “IronMan”

Air
Vehicle

Space
shuttle

Duc M. L. Software Engineering 15

ExceptionError

Throwable

Runtime
Exception

...

...
(Checked exceptions)

(Unchecked exceptions)

java.lang Multi-level TH:
exceptions

Duc M. L. Software Engineering 16

What about multiple super types?

● A subtype can have more than one supertypes
● In Java:

– only one super type is class, others must be interfaces
– class: specification and code
– interface: specification only

Duc M. L. Software Engineering 17

Interface example

● Interface PriorityObject represents objects
with priorities
– priority is determined based on the object

dimension (width, length, height)

Vehicle

Bus Car

PriorityObject

<<implements>>

Duc M. L. Software Engineering 18

Example: List TH

● List is a sequence of elements
● Two basic orders:

– insertion
– sorted: ascending or descending

● Java interface: java.util.List
● Two subtypes:

– ArrayList
– LinkedList

Duc M. L. Software Engineering 19

List TH
● Includes both classes and interfaces

Abstract
CollectionQueue

LinkedList

Collection

AbstractList

List

ArrayList

<<interface>>

Vector

Duc M. L. Software Engineering 20

Design concepts

● Inheritance
● Subtypes with more specialised abstract

properties
● Subtypes typically override certain supertype's

behaviour
– abstraction by specification

● Subtypes can have new attributes
● Subtypes can have new behaviour

Duc M. L. Software Engineering 21

Inheritance

● Subtypes inherit attributes and operations of the
supertype and all ancestors (except
constructors):
– benefit: code re-use

● Sub-types must define constructors that they
wish to use:
– but must invoke suitable supertype constructor(s) if

not the default
● Objects of the subtypes must not violate

properties associated to the attributes:
– see properties rule later

Duc M. L. Software Engineering 22

Example: Vehicle

- name: String
- width: double
- height: double
- length: double
- weight: double
- seatingCapacity: int

+ Vehicle(String, double, double, double, double, int)
+ getName(): String
+ setName(String)
+ calcTotalWeight(): double
+ repOK(): boolean
+ toString(): String
- validate(String, double, double, double, double, c): boolean
- validateName(String): boolean
- validateDimension(double): boolean
validateWeight(double w): boolean
validateSeatingCapacity(int c): boolean

Vehicle

Setters/
getters
of other
attributes

are omitted

Duc M. L. Software Engineering 23

Vehicle's abstract properties

Attributes Formal
type Mutable Optional Min Max Length

name String T F - - 100
width Double T F 0+ - -
height Double T F 0+ - -
length Double T F 0+ - -
weight Double T F 0+ - -
seating
Capacity

Integer T F 0+ - -

Duc M. L. Software Engineering 24

Bus and Car inherit Vehicle

- name: String
- width: double
- height: double
- length: double
- weight: double
- seatingCapacity: int

+ Vehicle(String, double, double, double, double, int)
...

Vehicle

+ Bus(String, double, double, double, double, int)

Bus

+ Car(String, double, double, double, double, int)

Car

Duc M. L. Software Engineering 25

Subtypes with specialised
abstract properties

● A subtype can have more "restricted" properties
concerning one or more attributes that it inherits

● Example:
– Bus and Car both have tighter restrictions on

attributes weight and seatingCapacity

Duc M. L. Software Engineering 26

Example: Bus's & Car's restrictions
on weight

Attributes Formal
type Mutable Optional Min Max Length

name String T F - - 100
...

weight Double T F

for Vehicle
0+ - -

for Bus
5000 - -

for Car
- 2000 -

...

Duc M. L. Software Engineering 27

Operation/Method overriding

● When to override a method in a subtype?
● To take into account:

● subtype's type information (e.g. type name)
● subtype's abstract properties
● subtype's behaviour

● Example:
– Bus and Car have specialised properties concerning

weight and seating capacity
– Bus and Car have different engine-ignition behaviours

Duc M. L. Software Engineering 28

Vehicle TH: overriding methods

- name: String
- width: double
- height: double
- length: double
- weight: double
- seatingCapacity: int

+ Vehicle(String, double, double, double, double, int)
...
+ toString(): String
validateWeight(double w): boolean
validateSeatingCapacity(int c): boolean

Vehicle

+ Bus(String, double, double, double, double, int)
+ toString(): String
validateWeight(double w): boolean
validateSeatingCapacity(int c): double

Bus

+ Car(String, double, double, double, double, int)
+ toString(): String
validateWeight(double w): boolean
validateSeatingCapacity(int c): double

Car

Duc M. L. Software Engineering 29

Subtype with additional attributes

● A subtype can have additional attributes that
are specific to it

● These attributes would require adding new
operations

● Example:
– Bus: has routes
– Car: has owner name

Duc M. L. Software Engineering 30

Example:
Vehicle TH

- routes: int[]

Bus

- owner: String

Car

- name: String
- width: double
- height: double
- length: double
- weight: double
- seatingCapacity: int

...

Vehicle

Duc M. L. Software Engineering 31

Subtype with additional behaviour

● Subtype can have additional operations that
serve it’s specific purpose

● These operations may be related to additional
attributes that it has

● Example:
– Car.openTheTrunk():

● open the cargo trunk at the back of the car
– Bus.raiseStopBell():

● (for passenger) to request the bus to stop at the next
station

Duc M. L. Software Engineering 32

The meaning of subtype:
substitution principle

● Substitution principle: "supertype can be used in
place of its subtypes"

● That is, objects of a subtype can be assigned to
a variable declared with the supertype:
– supertype is the apparent type of the variable
– subtype is the actual or run-time type of the variable

Duc M. L. Software Engineering 33

super type
variables are

assigned
to subtype

objects

// create objects

Vehicle v = new Bus("b1",3.0,3.0,10.0,6000,40);
// use objects

System.out.println("Vehicle " + v.getName() +

 ", weight: " + v.calcTotalWeight());

// some time later...

v = new Car("c1",1.5,1.5,2.5,1500,4);

Example: Substitution principleCode

Duc M. L. Software Engineering 34

Design approach
● Specify a supertype with common behaviour
● Specify each subtype relative to the supertype:

– specialise the abstract properties based supertype’s
– use extends or implements keyword
– specify new or overriding behaviour
– (if needed) specify new attributes

● Use annotations to define the specialised features:
– @DomainConstraint
– @DOpt, @AttrRef
– @Override

Duc M. L. Software Engineering 35

Qualities of subtype specification

● Conform to the substitution principle:
● header rule: operation header conform to

supertype’s operation
● methods rule: operation’s behaviour must be

consistent with supertype’s operation
● properties rule: must not violate the supertype's

properties

Duc M. L. Software Engineering 36

Class/interface rules

● Supertype/subtype → class or interface
● Object is the (root) supertype of all types

– need not be specified
● Interface only has specifications
● Interface can only be a subtype of another

interface
● Class can be a subtype of:

● one class and/or
● multiple interfaces

Duc M. L. Software Engineering 37

Specialise the abstract properties

● Given a supertype named Super and an
attribute A, the following is a specialisation of
the abstract properties of A in a subtype:
P_Super.A ⋀ F(A)

Super's
property

on attribute A
(inherited)

Subtype's further
restriction

on A

Duc M. L. Software Engineering 38

Example: Bus's restriction on weight

● P_Vehicle.weight ⋀ min(weight) = 5000

Vehicle's property
on weight
(inherited)

Bus's further
restriction
on weight

Duc M. L. Software Engineering 39

Car's restriction on weight

● P_Vehicle.weight ⋀ max(weight) = 2000

Vehicle's property
on weight
(inherited)

Car's further
restriction
on weight

Duc M. L. Software Engineering 40

Using DomainConstraint to realise
property specialisation

● We can specify in a subtype a DomainConstraint for a
property specialisation

● But NOT in the usual way (that is to attach it to an
attribute):
– Why? because the attribute is not available in the subtype!

● The solution involves two parts:
– define an overriding method in the subtype that overrides a

supertype's method concerning the attribute (e.g. data validation
or observer method)

– attach a DomainConstraint to this overriding method

Duc M. L. Software Engineering 41

Example: validateWeight

...

validateWeight(double w): boolean

Vehicle

...
validateWeight(double w): boolean

Bus

...
validateWeight(double w): boolean

Car

@DomainConstraint{
 type="Double",
 mutable=true,
 optional=false,
 min=5000
}

@DomainConstraint{
 type="Double",
 mutable=true,
 optional=false,
 max=2000
}

Duc M. L. Software Engineering 42

Specify the overriding methods

● An overriding method in the subtype must
satisfy two rules w.r.t overriden method:
– header rule
– methods rule

● Annotated with @Override

Duc M. L. Software Engineering 43

Header rule
● Overriding method must be header compatible with

the overriden method
● Method header includes:

– signature: method name, number and types of
parameters (also means their order)

– return type
– thrown exceptions: (details next lecture)

● Compatibility means:
– same signature
– return type: same (Jdk < 1.4) or subtype (>= 1.5)
– exceptions: (details next lecture)

Duc M. L. Software Engineering 44

Example: validateWeight

...

validateWeight(double w): boolean

Vehicle

...
validateWeight(double w): boolean

Bus

...
validateWeight(double w): boolean

Car

Duc M. L. Software Engineering 45

What about these methods?

+ validateWeight(float w): boolean

+ validateWeight(double w): int

+ validateW(double w): boolean

+ validateWeight(double w)

+ validateWeight(): boolean

?Are these correct overriding methods

Duc M. L. Software Engineering 46

Methods rule

● Pre-condition (@requires) is the same or weaken:
– Presuper → Presub

● Post-condition (@effects) is the same or strengthen:
– (Presuper ⋀ Postsub) → Postsuper

Duc M. L. Software Engineering 47

Example: Bus.validateWeight (1)

...

validateWeight(double w): boolean

Vehicle

...
validateWeight(double w): boolean

Bus

/**
 * @effects
 * if w is valid
 * return true
 * else
 * return false
 */

/**
 * @effects
 * if w is valid
 * return true
 * else
 * return false
 */

Duc M. L. Software Engineering 48

Vehicle and Bus properties
w.r.t weight

● Vehicle properties w.r.t weight
(P_Vehicle.weight):

mutable(weight)=true ⋀
optional(weight)=false ⋀
min(weight)=0+
● Bus properties w.r.t weight:
 P_Vehicle.weight ⋀ min(weight) = 5000

Duc M. L. Software Engineering 49

Example: Bus.validateWeight (2)
● PreVehicle → PreBus:

true because both are empty
● (PreVehicle ⋀ PostBus) → PostVehicle:

PostVehicle = P_Vehicle.weight.

PreVehicle = true.

PostBus = P_Vehicle.weight min(weight)=5000⋀
→ P_Vehicle.weight.

Duc M. L. Software Engineering 50

Specification Example: Vehicle

ch7.vehicles.Vehicle
● Note:

● property statements are easy to code directly
● constant DomainConstraint.ZERO_PLUS
● two validation methods are declared protected:

– validateWeight
– validateSeatingCapacity

Spec

Duc M. L. Software Engineering 51

Bus

ch7.vehicles.Bus
● Note:

● P_Vehicle: abstract properties of Vehicle
● abstract properties = Vehicle's + two new

constraints on weight and seatingCapacity
– constructor is redefined (not inherited)
● override two protected validation methods:

– validateWeight
– validateSeatingCapacity

Spec

Duc M. L. Software Engineering 52

Car

ch7.vehicles.Car
● Note:

● Car is specified in a similar manner, except for the
constraints on weight and seatingCapacity

Spec

Duc M. L. Software Engineering 53

Interface

● Unlike class, interface only contains abstract
operations:
– abstract operation: no code body
– operations are non-static and (by default) public

● Classes that implement an interface must
provide code for the operations

● A simplified solution for multiple inheritance in
OOPL:
– a class extends (exactly) one class and implements

several interfaces

Duc M. L. Software Engineering 54

Interface example:
Bus implements PriorityVehicle

Vehicle

Bus Car

PriorityObject

<<implements>>

+ comparePriorityTo(pv: Vehicle): int

PriorityObject

Duc M. L. Software Engineering 55

PriorityVehicle

ch7.vehiclesintf
.PriorityObject
.Bus

● Note:
● Bus uses the implements keyword

Spec

Duc M. L. Software Engineering 56

Java’s interfaces for sorting:
Comparable and Comparator

java.lang.Comparable
java.util.Comparator

1) What are they used for?
2) What operation(s) must a class implement?
3) Update class Vehicle to implement the
Comparable interface:

● to compare Vehicle objects based their names

4)* How do you design Vehicle to support both
ASC and DESC sorting orders?

EXer
cise

https://docs.oracle.com/javase/8/docs/api/index.html?overview-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

Duc M. L. Software Engineering 57

Coding a TH in Java

● Keyword super refers to supertype's members
– can access protected members of super

● Implementation can be full or partial
– abstract class is partial (later)

● Overriding repOK must invoke super.repOK

Duc M. L. Software Engineering 58

Vehicle

ch7.vehicles.Vehicle
● Note:

● repOK invokes validate
● toString uses Vehicle prefix

Code

Duc M. L. Software Engineering 59

Bus

ch7.vehicles.Bus
● Note:

● constructor invokes super constructor
● toString uses Bus prefix
● validation methods check against the min values

Code

Duc M. L. Software Engineering 60

Car

ch7.vehicles.Car
● Note:

● constructor invokes super constructor
● toString uses Car prefix
● validation methods:

– invoke super's validation methods and
– check against the max values

Code

Duc M. L. Software Engineering 61

PriorityVehicle

ch7.vehiclesintf
.PriorityObject
.Bus

● Note:
● Bus uses the implement keyword
● comparePriorityTo invokes other methods to

get data

Code

Duc M. L. Software Engineering 62

Subtypes with additional attributes

● Design specification of the subtype needs to
take into account the additional attributes:
– class header specification: attributes, abstract

properties
– constructors may need to take extra argument(s)

(depending on the domain constraint(s))
– new operations may be needed, e.g. getter/setter
– supertype's operations may need to be overriden

Duc M. L. Software Engineering 63

Example:
Vehicle TH

- routes: int[]

+ Bus(String, double, double, double, double, int, int[])
+ getRoutes(): int[]
+ repOK(): boolean
+ toString(): String
validateWeight(double w): boolean
validateSeatingCapacity(int c): boolean
- validateRoutes(): boolean

Bus

- owner: String

+ Car(String, double, double, double, double, int)
+ setOwner(String)
+ getOwner(): String
+ repOK(): boolean
+ toString(): String
validateWeight(double w): boolean
validateSeatingCapacity(int c): boolean
- validateOwner(): boolean

Car

- name: String
- width: double
- height: double
- length: double
- weight: double
- seatingCapacity: int

+ Vehicle(String, double, double, double, double, int)
...
+ repOK(): boolean
+ toString(): String
…
validateWeight(double w): boolean
validateSeatingCapacity(int c): boolean

Vehicle

Duc M. L. Software Engineering 64

Bus

ch7.vehiclesextra.Bus
● Note:

● abstract properties use function length over array
● constructor takes an extra argument
● getRoutes: return a copy of routes
● repOK: first invoke super's then invoke
validateRoutes

● validateRoutes: validate routes against
abstract properties

Duc M. L. Software Engineering 65

Car

ch7.vehiclesextra.Car
● Note:

● abstract properties use function length over
string

● setOwner: validate argument by invoking
validateOwner before setting

● repOK: first invoke super's then invoke
validateOwner

● validateOwner: validate owner against abstract
properties

Duc M. L. Software Engineering 66

Abstract class

● A super-type that cannot be instantiated
● though still have constructors

● Provides either partial or full implementation
● Partial implementation must contain abstract

methods

?Which class in the Vehicle TH
would be made abstract

Duc M. L. Software Engineering 67

Collection type hierarchy

● Supertype: represents a more abstract collection
– e.g. List is an interface that represents all kinds of

lists
● Subtype: represents a concrete implementation

– e.g. LinkedList, ArrayList implements List
● Abstract classes are used to provide a partial

implementation of some interface
– contains shared operations

● Care should be taken when overriding the
mutator-add and remove operations

Duc M. L. Software Engineering 68

Example: Java’s List TH
● Includes both classes and interfaces

Abstract
CollectionQueue

LinkedList

Collection

AbstractList

List

ArrayList

<<interface>>

Vector

Duc M. L. Software Engineering 69

Example: method overriding

IntSet

SortedIntSet

Vector

SortedIntVector

Duc M. L. Software Engineering 70

Vector.add

/**
 * @effects appends o to the end of this
 */
public boolean add(Object o)

Duc M. L. Software Engineering 71

SortedIntVector.add

/**
 * @effects <pre> if this is empty OR o is >= all elements
 * of this
 * super.add(o)
 * else
 * insert o at the position i in this s.t
 * xk <= o for all 0 <= k <= i-1 and
 * xj > o for all i+1 <= j < this.size
 * </pre>
 */
public boolean add(Object o)

?Is this a correct overriding method

Duc M. L. Software Engineering 72

IntSet.insert

 /**
 * @modifies <tt>this</tt>
 * @effects adds x to this, i.e.
 * </tt>this_post = this + {x}</tt>
 */
 public void insert(int x)

Duc M. L. Software Engineering 73

SortedIntSet.insert

?Is this a correct overriding method

 /**
 * @modifies <tt>this</tt>
 * @effects <pre>adds x to this, i.e.
 * this_post = this + {x},
 * such that x is greater than all elements
 * before and smaller than all elements
 * after it</pre>
 */
 public void insert(int x)

Duc M. L. Software Engineering 74

Dispatching
● A run-time mechanism to find the right object to

execute a method
● Each object has a pointer to a dispatch vector
● Dispatch vector contains references to the

object methods
● Method invocation is dispatched to the target

implementation

Duc M. L. Software Engineering 75

Dispatching example

r
o

Stack Heap

< , “abc”>
equals

Code for
String equals

< , “abc”>

Dispatch
vector

String t = "ab";
Object o = t + "c";
String r = "abc";
boolean b = o.equals(r);

Duc M. L. Software Engineering 76

Summary

● Type hierarchy is a product of type abstraction:
generalise related types to create a more
abstract type

● TH obeys the substitution principle
● A subtype can be a class or an interface

– inherite features
– can have new features (attributes, behaviours)
– can override behaviours

● Annotation helps make TH design rules explicit
in the code

Duc M. L. Software Engineering 77

Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

