
Software Engineering

Lecture 4(a):

Introduction to Requirement analysis (2):

Requirement modelling & specification

Duc M. L. Software Engineering 2

Outline

● Requirement modelling
● UML class & use case diagrams

● Requirement specification

 Case study: KEngine

Duc M. L. Software Engineering 3

References

● Liskov & Guttag (2001):
– Chapters: 12
– Modified to use UML diagrams

● Sommerville (2011):
– Chapter 4: 4.3 (requirement specification)
– Chapter 5: 5.3.1 (class diagram)

Duc M. L. Software Engineering 4

Development process
Requirements

Analysis

Design

Implementation
& Test

Acceptance
Test

Production

Modification
& Maintenance

● Part of RE
● Structure requirements
● Model the system
● Specify the requirements
Output:

● (concept) class diagram
& constraints

● requirement specification

Duc M. L. Software Engineering 5

Requirement modelling

● To build conceptual models of the software
● Models exist for functional, data and non-

functional requirements
● Models are expressed in a modelling language
● Unified Modelling Language (UML)

● an object-oriented modelling language

● Selected UML models:
● for static aspect: class diagram
● for dynamic aspect: use case diagram

1

Duc M. L. Software Engineering 6

Class diagram

● Models the classes and their associations
● Developed in analysis and refined in design
● Analysis class diagram models the domain

concepts:
● e.g. Query, Match, Keyword

● Design class diagram models:
● entities in fine detail (operations & more attributes)
● additional software entities

Duc M. L. Software Engineering 7

Example: KEngine (details later)

Query

*

Document

title
url
body 1..*1..*

Word

label

NonKeyword

Keyword

appears-in

frequency

Match

sumFreq

refers-to

0..*

1..1

1..*

hasMatch hasKeyword

Duc M. L. Software Engineering 8

Class diagram elements

● Class:
● attributes
● operations (methods)

● Association
● cardinality

● Association class
● Constraint

Entity

Relationship

Associative
Entity

Domain constraint,
...

ERD equivalencesUML

Duc M. L. Software Engineering 9

Document

title
url
body 1..*1..*

Word

label

appears-in

Graphical UML notation (1)

Class
attributes

operations Association

Duc M. L. Software Engineering 10

Graphical UML notation (2)

Document

title
url
body 1..*1..*

Word

label

appears-in

frequency

Association
Class

Duc M. L. Software Engineering 11

Enhanced associations

● Generalisation
● Aggregation

Duc M. L. Software Engineering 12

Generalisation association

● Model type hierarchy
● Group classes that have common

characteristics to form a more general one
● Generalised class is called super class,

specialised classes are sub-classes
● Sub-classes inherit properties of super class

Duc M. L. Software Engineering 13

Examples

Degree

name

Undergraduate

GPA

Postgraduate

level

Word

label

NonKeyword

Keyword

Duc M. L. Software Engineering 14

Aggregation association

● Models a composition relationship

Query

*

KeywordMatch

sumFreq

1..*
hasMatch hasKeyword

Duc M. L. Software Engineering 15

Constraint

● Statement not modelled in the class diagram
● Two types: attribute and association constraint
● Attribute constraint specifies:

● domain constraints,
● or derived values of an attribute

● Association constraint specifies:
● composition, ordering, etc.

Duc M. L. Software Engineering 16

Constraint language

● A formal or informal language
– the latter is similar to specification language used so far

● We adopt Liskov’s constraint language but apply to
UML model

● Consists of two parts:
● Natural lang. description (English)
● A logic statement expressing the constraint over the

concerned model elements

● Natural language description is required

Duc M. L. Software Engineering 17

Logic statement

Natural lang desc.
Example

appears-in:frequency is the count of
occurrences of a word in a given document

for all d: Document, w: Word [

 appears-in(w,d) =>

 appears-in(w,d):frequency =

 | {k | k in d.body, k=w } |

]

Duc M. L. Software Engineering 18

How to construct a class diagram

● Map entities to domain classes
● Map relationships to associations

● cardinality constraints to class cardinalities

● Map associative entities to association classes
● Write constraint statements (if any)

Duc M. L. Software Engineering 19

KEngine entities

Document: title, url, body

Word: label

Keyword

NonKeyword

Query

Match: document, sum-freq

Duc M. L. Software Engineering 20

Class diagram (a)

Query

Document

title
url
body

Word

label

NonKeyword

Keyword

Match

sumFreq

Duc M. L. Software Engineering 21

KEngine relationships

appears-in(Keyword,Document): frequency

hasKeyword(Query,Keyword)

hasMatch(Query, Match)

refers-to(Match, Document)

Duc M. L. Software Engineering 22

Class diagram (b)

Query

Document

title
url
cachedURL 1..*1..*

Word

label

NonKeyword

Keyword

appears-in

frequency

Match

sumFreq

Duc M. L. Software Engineering 23

Class diagram (c)

Query

*

Document

title
url
cachedURL 1..*1..*

Word

label

NonKeyword

Keyword

appears-in

frequency

Match

sumFreq

1..*

hasMatch hasKeyword

Duc M. L. Software Engineering 24

Class diagram (d)

Query

*

Document

title
url
cachedURL 1..*1..*

Word

label

NonKeyword

Keyword

appears-in

frequency

Match

sumFreq

refers-to

0..*

1..1

1..*

hasMatch hasKeyword

Duc M. L. Software Engineering 25

Attribute constraints

appears-in:frequency

Match:sumFreq

Duc M. L. Software Engineering 26

appears-in.frequency constraint

● given earlier

Duc M. L. Software Engineering 27

Match.sumFreq constraint

● Match:sumFreq is the total count of
occurrences of all keywords in that document

for all q: Query, m: Match, d:
Document [

 hasMatch(q,m) /\ refers-to(m,d) =>

 m.sumFreq =

 sum(appears-in(w,d):frequency),

 for all w in q

]

Duc M. L. Software Engineering 28

Association constraints

Document matches Query

Matches’ ordering

Duc M. L. Software Engineering 29

Document matches Query

● A document matches a query if it contains all
the query keywords

for all q: Query, m: Match, d:
Document [

hasMatch(q,m) /\ refers-to(m,d) =>

 for all w in q (w in d.body)

]

Duc M. L. Software Engineering 30

Matches ordering

● Matches are ordered by sum of keyword counts

for all q: Query, m1, m2: Match [

hasMatch(q,m1) /\ hasMatch(q,m2) /\

m1.sumFreq ≥ m2.sumFreq =>

 hasMatch(q,m1).index <

 hasMatch(q,m2).index

]

Duc M. L. Software Engineering 31

Use case diagram

● Shows actor interactions via use cases
● Many-to-many interactions:

● an actor may interact with many use cases
● a use case may involve more than one actors

● System is a high-level abstraction
● only functionality description, no further detail

Duc M. L. Software Engineering 32

Graphical notation

User

Obtain documents

Search for
documents

Display a document

KEngine System

Duc M. L. Software Engineering 33

Requirement specification

● A high-level specification of the system:
● system as a high-level abstraction

● Combines both data and function models
● Specifies succintly what the system provides
● Used as input in design to generate the design

specification

2

Duc M. L. Software Engineering 34

Requirement specification language

● A simplified form of the (design) specification
language

● Replace REQUIRES clause by CHECKS
● CHECKS clause:

● lists the input and model constraints

● No MODIFIES clause
● operations always modifies the system state

● Refers to the model elements

Duc M. L. Software Engineering 35

System specification

● Considers the system as an abstraction
● Use cases become system operations

Duc M. L. Software Engineering 36

Example: Engine

● startEngine

● addDocuments

● query

● queryMore

● findDoc

Obtain
documents

Search for documents

Display a document

Duc M. L. Software Engineering 37

Engine specification
/**
 @overview
 Represents keyword search engines. An engine holds a mutable
 collection of documents, which are obtained from some given URLs.
 The engine is able to pocess a keyword query to search for
 documents that contain the keywords.

 The matching documents are ranked based on the frequencies of the
 keywords found in them.

 The engine has a private file that contains the list of
 uninteresting words.
 */

class KEngine {

}

Duc M. L. Software Engineering 38

Procedural specification

● No return types or exceptions
● Assumes total procedure
● Preserve model constraints

Duc M. L. Software Engineering 39

startEngine
/**
 @overview ...(omitted)...
 */
class Engine {
 /**
 @effects
 Starts the engine running with NonKeyword
 containing the words in the private file.
 All other sets are empty.
 */
 static startEngine()

Duc M. L. Software Engineering 40

addDocuments
 /**
 @checks u does not name a site in URL and
 u names a site that provides documents

 @effects
 Adds u to URL and
 adds documents at site u with new titles to Document.
 If Keyword is non-empty adds any documents that match
 the keywords to Match.
 */
 addDocuments(String u)

Duc M. L. Software Engineering 41

 /**
 @checks: w is not in NonKeyword

 @effects
 Sets Keyword = {w} and
 makes Match contain the documents that match w,
 ordered as required.
 */
 query(String w)

query

Duc M. L. Software Engineering 42

queryMore
 /**
 @checks Keyword != {} and
 w not in NonKeyword and w not in Keyword

 @effects
 Adds w to Keyword and
 makes Match be the documents already
 in Match that additionally match w.
 Orders Match properly.
 */
 queryMore(String w)

Duc M. L. Software Engineering 43

findDoc
 /**
 @checks t is in titles

 @effects
 return d in Document s.t. d's title = t
 */
 findDoc(String t)
} // end Engine

Duc M. L. Software Engineering 44

● A model is expressed in a modelling language
● UML is an object-oriented modelling language that

supports requirement modelling
● Data and functional modelling are helped by UML class

and use case diagrams

● Requirement specification is written in a simplifed
version of the specification language, using the models

Summary

Duc M. L. Software Engineering 45

Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

