
Software Engineering

Lecture 4(a):

Introduction to Requirement analysis (2):

Requirement modelling & specification
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Outline

● Requirement modelling
● UML class & use case diagrams

● Requirement specification

 Case study: KEngine
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References

● Liskov & Guttag (2001):
– Chapters: 12
– Modified to use UML diagrams

● Sommerville (2011): 
– Chapter 4: 4.3 (requirement specification)
– Chapter 5: 5.3.1 (class diagram)
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Development process
Requirements 

Analysis

Design

Implementation
& Test

Acceptance
Test

Production

Modification
& Maintenance

● Part of RE
● Structure requirements
● Model the system
● Specify the requirements
Output:

● (concept) class diagram 
& constraints

● requirement specification
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Requirement modelling

● To build conceptual models of the software
● Models exist for functional, data and non-

functional requirements
● Models are expressed in a modelling language
● Unified Modelling Language (UML)

● an object-oriented modelling language

● Selected UML models:
● for static aspect: class diagram
● for dynamic aspect: use case diagram

1
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Class diagram

● Models the classes and their associations
● Developed in analysis and refined in design
● Analysis class diagram models the domain 

concepts:
●  e.g. Query, Match, Keyword

● Design class diagram models:
● entities in fine detail (operations & more attributes)
● additional software entities
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Example: KEngine (details later)

Query

*

Document

title
url
body 1..*1..*

Word

label

NonKeyword

Keyword

appears-in

frequency

Match

sumFreq

refers-to

0..*

1..1

1..*

hasMatch hasKeyword
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Class diagram elements

● Class:
● attributes
● operations (methods)

● Association
● cardinality

● Association class
● Constraint

Entity

Relationship

Associative
Entity

Domain constraint, 
...

ERD equivalencesUML
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Document

title
url
body 1..*1..*

Word

label

appears-in

Graphical UML notation (1)

Class
attributes

operations Association
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Graphical UML notation (2)

Document

title
url
body 1..*1..*

Word

label

appears-in

frequency

Association
Class
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Enhanced associations

● Generalisation 
● Aggregation
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Generalisation association

● Model type hierarchy
● Group classes that have common 

characteristics to form a more general one
● Generalised class is called super class, 

specialised classes are sub-classes
● Sub-classes inherit properties of super class
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Examples

Degree

name

Undergraduate

GPA

Postgraduate

level

Word

label

NonKeyword

Keyword
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Aggregation association

● Models a composition relationship

Query

*

KeywordMatch

sumFreq

1..*
hasMatch hasKeyword
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Constraint

● Statement not modelled in the class diagram
● Two types: attribute and association constraint
● Attribute constraint specifies:

● domain constraints, 
● or derived values of an attribute

● Association constraint specifies:
● composition, ordering, etc.
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Constraint language

● A formal or informal language 
– the latter is similar to specification language used so far

● We adopt Liskov’s constraint language but apply to 
UML model

● Consists of two parts:
● Natural lang. description (English)
● A logic statement expressing the constraint over the 

concerned model elements

● Natural language description is required
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Logic statement

Natural lang desc.
Example

appears-in:frequency is the count of 
occurrences of a word in a given document

for all d: Document, w: Word [

  appears-in(w,d) => 

  appears-in(w,d):frequency = 

    | {k | k in d.body, k=w } |

]
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How to construct a class diagram

● Map entities to domain classes
● Map relationships to associations

● cardinality constraints to class cardinalities

● Map associative entities to association classes
● Write constraint statements (if any)
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KEngine entities

Document: title, url, body

Word: label

Keyword

NonKeyword

Query

Match: document, sum-freq
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Class diagram (a)

Query

Document

title
url
body

Word

label

NonKeyword

Keyword

Match

sumFreq
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KEngine relationships

appears-in(Keyword,Document): frequency

hasKeyword(Query,Keyword)

hasMatch(Query, Match)

refers-to(Match, Document)
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Class diagram (b)

Query

Document

title
url
cachedURL 1..*1..*

Word

label

NonKeyword

Keyword

appears-in

frequency

Match

sumFreq
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Class diagram (c)

Query

*

Document

title
url
cachedURL 1..*1..*

Word

label

NonKeyword

Keyword

appears-in

frequency

Match

sumFreq

1..*

hasMatch hasKeyword
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Class diagram (d)

Query

*

Document

title
url
cachedURL 1..*1..*

Word

label

NonKeyword

Keyword

appears-in

frequency

Match

sumFreq

refers-to

0..*

1..1

1..*

hasMatch hasKeyword
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Attribute constraints

appears-in:frequency

Match:sumFreq 
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appears-in.frequency constraint

● given earlier
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Match.sumFreq constraint

● Match:sumFreq is the total count of 
occurrences of all keywords in that document

for all q: Query, m: Match, d: 
Document [ 

  hasMatch(q,m) /\ refers-to(m,d) => 

  m.sumFreq = 

  sum(appears-in(w,d):frequency),

      for all w in q 

]
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Association constraints

Document matches Query

Matches’ ordering
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Document matches Query

● A document matches a query if it contains all 
the query keywords

for all q: Query, m: Match, d: 
Document [ 

hasMatch(q,m) /\ refers-to(m,d) => 

  for all w in q (w in d.body) 

]
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Matches ordering

● Matches are ordered by sum of keyword counts

for all q: Query, m1, m2: Match [

hasMatch(q,m1) /\ hasMatch(q,m2) /\

m1.sumFreq ≥ m2.sumFreq => 

    hasMatch(q,m1).index <

    hasMatch(q,m2).index 

]
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Use case diagram

● Shows actor interactions via use cases
● Many-to-many interactions:

● an actor may interact with many use cases 
● a use case may involve more than one actors

● System is a high-level abstraction
● only functionality description, no further detail
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Graphical notation

User

Obtain documents

Search for 
documents

Display a document

KEngine System
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Requirement specification

● A high-level specification of the system:
● system as a high-level abstraction

● Combines both data and function models
● Specifies succintly what the system provides 
● Used as input in design to generate the design 

specification

2
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Requirement specification language

● A simplified form of the (design) specification 
language

● Replace REQUIRES clause by CHECKS
● CHECKS clause:

● lists the input and model constraints 

● No MODIFIES clause
● operations always modifies the system state

● Refers to the model elements
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System specification

● Considers the system as an abstraction
● Use cases become system operations
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Example: Engine

● startEngine

● addDocuments

● query

● queryMore

● findDoc

Obtain 
documents

Search for documents

Display a document
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Engine specification
/**
  @overview 
   Represents keyword search engines. An engine holds a mutable
   collection of documents, which are obtained from some given URLs.
   The engine is able to pocess a keyword query to search for 
   documents that contain the keywords.
   
   The matching documents are ranked based on the frequencies of the
   keywords found in them.
   
   The engine has a private file that contains the list of 
   uninteresting words.
 */

class KEngine {

} 
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Procedural specification

● No return types or exceptions
● Assumes total procedure
● Preserve model constraints
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startEngine
/**
  @overview ...(omitted)...
 */
class Engine {
  /**
    @effects 
     Starts the engine running with NonKeyword  
       containing the words in the private file.
     All other sets are empty.
   */
  static startEngine()
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addDocuments
  /**
    @checks u does not name a site in URL and 
      u names a site that provides documents
    
    @effects 
     Adds u to URL and 
     adds documents at site u with new titles to Document. 
     If Keyword is non-empty adds any documents that match
        the keywords to Match.
   */
  addDocuments(String u) 
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  /**
    @checks: w is not in NonKeyword
    
    @effects 
     Sets Keyword = {w} and
     makes Match contain the documents that match w,
       ordered as required. 
   */
  query(String w)

query
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queryMore
  /**
    @checks Keyword != {} and 
      w not in NonKeyword and w not in Keyword
    
    @effects 
     Adds w to Keyword and 
     makes Match be the documents already
       in Match that additionally match w. 
     Orders Match properly.
   */
  queryMore(String w)
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findDoc
  /**
    @checks t is in titles
    
    @effects 
     return d in Document s.t. d's title = t
   */
  findDoc(String t)
} // end Engine
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● A model is expressed in a modelling language
● UML is an object-oriented modelling language that 

supports requirement modelling
● Data and functional modelling are helped by UML class 

and use case diagrams

● Requirement specification is written in a simplifed 
version of the specification language, using the models

Summary
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Q & A
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