
Software Engineering

Lectures 4(b)-6:
Object oriented software design:

principles & techniques (with UML)

Duc M. L. Software Engineering 2

Outline

● Design overview
● Design process
● Design notebook
 Case study: KEngine design

● Iteration 0
● Iteration 1
● Iteration 2

● Design process review

Lectures 4,5

Lectures 5,6

Duc M. L. Software Engineering 3

References

● Liskov & Guttag (2001):
– Chapter 13: Design
– Modified to use UML sequence diagram

● Sommerville (2011):
– Chapter 5: 5.1 (activity diagram), 5.2 (sequence

diagram)

Duc M. L. Software Engineering 4

Development processRequirements
Analysis

Design

Implementation
& Test

Acceptance
Test

Production

Modification
& Maintenance

● Decomposition by abstraction
● Iterative
● Output: design notebook:

● design class diagram
● sequence diagram
● design specification

Duc M. L. Software Engineering 5

Design overview

● Input: requirement specification
● Output: a modular software structure

● components are all good abstractions
● easy to implement and modify

● Goal: to develop detailed specifications

Duc M. L. Software Engineering 6

Design process

● Two principles:
● decomposition by abstraction
● iterative refinement

● Decomposition by abstraction:
● decompose functions
● invent or use abstractions to accommodate the

sub-functions
● Iterative refinement (top-down):

● divide design activities into iterations
● start high-level, incrementally refine

Duc M. L. Software Engineering 7

Iterative development process

● A type of incremental development (Sommerville, 2011):
– one iteration produces one software version

PlanningPlanning

Requirement
Analysis

Requirement
Analysis Initial

Version
Initial

Version

TestingTesting

ImplementationImplementation

DesignDesign

Final
Version
Final

Version

Intermediate
Versions

Duc M. L. Software Engineering 8

Steps performed at each iteration

● Select an abstraction (A)
● Identify helper abstractions needed to:

– implement A and
– facilitate decomposition

● Write/update design specification for A
● Stop if design specifications of all abstractions

have been determined

Duc M. L. Software Engineering 9

Iterations
● Iteration 0: initial abstractions

– identify some initial abstractions, including the software
and other obvious concepts

– these concepts can be identified from initial design
spec. of the software’s operations

● Iteration 1: top-level abstractions
– Start analysing the design spec. of each initial

abstraction to identify new abstractions (if any)
● Subsequent iterations: refinement

– Repeat the analysis for each new abstraction until no
further abstractions are identified

Duc M. L. Software Engineering 10

Illustration: Iteration 0
Initial abstractions

● Starts with the initial software abstraction (A0)
– with operations m1, m2, …

● Briefly analyse the specifications of m1, m2, … to
determine other initial abstractions A1, A2, …
– these abtractions are typically stubs (empty) at this stage

m1()
m2()
...

A0
A1

A2 ...

(Software)

Duc M. L. Software Engineering 11

Iteration 1:
Top-level abstractions

a1: Object

m1(Object)
m2()
...

A0

...m3()
m4()
...

A1

m5()
m6()
...

A2

...
● Thoughly analyse &

design each of A0’s
operations to determine:
– attributes & operations of
– A0, A1, A2, …

● These abstractions will be
used as the starting point
for the decomposition

Duc M. L. Software Engineering 12

Iterations 2, 3, ...:
refinement

...

m3()
m4()
...

A1

m7()
m8()
...

A3

m9()
m10()
...

A4

...

...

● Repeatedly analyse & design
each new abstractions (A3, A4,
…) to determine other
abstractions:
– update existing abstractions
– create new abstractions

● Stop when no further
abstractions are needed:
– all abstractions are well-defined &
– easily mappable to the target

OOPL

Duc M. L. Software Engineering 13

Design notebook

● Documents all the design decisions
● A section for each abstraction, containing:

● design specification
● NRFs (eg. performance, modifiability)
● implementation sketch (if needed)
● other information: alternatives, context of use

● Includes diagrams:
● design
● sequence

Duc M. L. Software Engineering 14

Design class diagram

● Refined from the concept class diagram:
● all are software classes
● some new software specific classes
● domain classes are completed with rep and operations
● replace certain domain classes by software ones

– e.g. Word, Keyword, NonKeyWord → String
● Expressed in UML

● more detailed than module dependency diagram

Duc M. L. Software Engineering 15

Relationship with concept class diagram

● Two methods of building design class diagram:
– use concept class diagram (if available)
– is created from scratch (without using concept

class diagram)

Duc M. L. Software Engineering 16

Notebook update format

● Decompose queryFirst:
● ...
● ...
● ...
● For each document, determine if it is a match
● ...
● ...
● ...

<<design note>>

design update

Duc M. L. Software Engineering 17

ITERATION 0
Initial Abstraction(s)

Duc M. L. Software Engineering 18

Preparation

● Transform requirement specification into initial
design specification:
– types in CHECKS & EFFECTS become initial

abstractions
● Write the design spec for each initial abstraction:

– make the operations total by removing each CHECK
clause by a suitable Exception

– use initial abstractions as return types where required
● Construct initial design class diagram:

– associations with dependency indicators

Duc M. L. Software Engineering 19

KEngine: initial design overview

● Which abstractions can we initially identify
from Engine's requirement spec?

Engine

startEngine()
query(String)
queryMore(String)
findDoc(String)
addDocs(String)

?

? ...

Duc M. L. Software Engineering 20

Requirement specification

● startEngine

● addDocuments

● query

● queryMore

● findDoc

Obtain
docum

Search for documents

Display a document
View a document

Duc M. L. Software Engineering 21

/**
 @overview
 Represents keyword search engines. An engine holds a mutable
 collection of documents, which are obtained from some given URLs.
 The engine is able to pocess a keyword query to search for
 documents that contain the keywords.

 The matching documents are ranked based on the frequencies of the
 keywords found in them.

 The engine has a private file that contains the list of
 uninteresting words.
 */

class Engine {

}

Example: initial abstractions of KEngine

need an abstraction to represent the engine
→ creates abstraction Engine

Duc M. L. Software Engineering 22

 /**
 @checks u does not name a site in URL and
 u names a site that provides documents
 @effects
 Adds u to URL and
 adds documents at site u with new titles to Document.
 If Keyword is non-empty adds any documents that match
 the keywords to Match.
 */
 addDocuments(String u)

addDocuments

- need an abstraction to represent Document
→ creates abstraction Doc

- also need for Keyword and Match (later)

Duc M. L. Software Engineering 23

query

- need an abstraction to hold a keyword and to store
matches

- may use String for Keyword & NonKeyword

 /**
 @checks: w is not in NonKeyword
 @effects
 Sets Keyword = {w} and
 makes Match contain the documents that match w,
 ordered as required.
 */
 query(String w)

Duc M. L. Software Engineering 24

 /**
 @checks Key != {} and
 w not in NonKeyword and w not in Keyword
 @effects
 Adds w to Keyword and
 makes Match be the documents already
 in Match that additionally match w.
 Orders Match properly.
 */
 queryMore(String w)

queryMore

- need an abstraction to hold keywords and to store matches
→ creates abstraction Query

- may use String for Keyword & NonKeyword

Duc M. L. Software Engineering 25

findDoc

needs an abstraction to represent Document
→ uses abstraction Doc

 /**
 @checks t is in titles

 @effects
 return d in Document s.t. d's title = t
 */
 findDoc(String t)
} // end Engine

Duc M. L. Software Engineering 26

Initial data abstractions

● Engine
● Doc
● Query

Duc M. L. Software Engineering 27

Engine

Engine

Engine()
queryfirst(String): Query
queryMore(String): Query
findDoc(String): Doc
addDocs(String): Query

Duc M. L. Software Engineering 28

Initial design spec (1)
/**
 * @overview ...(omitted)...
 */
class Engine {
 /**
 * @effects
 * If uninteresting words not retrievable
 * throws NotPossibleException
 * else
 * creates NonKeyword and initialises app. state
 * appropriately
 */
 Engine() throws NotPossibleException

Duc M. L. Software Engineering 29

Initial design spec (2)
 /**
 * @effects
 * If WORD(w) = false or w in NonKeyword
 * throws NotPossibleException
 * else
 * sets Keyword = {w}, performs the new query, and returns the result
 */
 Query queryFirst(String w) throws NotPossibleException

 /**
 * @effects
 * If WORD(w) = false or w in NonKeyword or Key = {} or w in Keyword
 * throws NotPossibleException
 * else
 * add w to Keyword and returns the query result
 */
 Query queryMore(String w) throws NotPossibleException

Duc M. L. Software Engineering 30

 /**
 * @effects
 * If t not in Title throws NotPossibleException
 * else returns the document with title t
 */
 Doc findDoc (String t) throws NotPossibleException

 /**
 * @effects
 * If u is not a URL for a site containing documents or u in URL
 * throws NotPossibleException
 * else adds the new documents to Doc.
 * If no query was in progress
 * returns the empty query result
 * else
 * returns query result that includes any new matching documents
 */
 Query addDocs(String u) throws NotPossibleException
} // end Engine

Initial design spec (3)

Duc M. L. Software Engineering 31

Doc

/**
 * @overview
 * A textual document contains a title and some text content.
 */
class Doc {

} // end Doc

Doc

Duc M. L. Software Engineering 32

Query

/**
 * @overview
 * A query consists of keywords that are of interest.
 */
class Query {

}

Query

Duc M. L. Software Engineering 33

Engine

Engine()
queryfirst(String): Query
queryMore(String): Query
findDoc(String): Doc
addDocs(String): Query

Query

Doc

Initial design class diagram

depends on

Duc M. L. Software Engineering 34

ITERATION 1
Top-level Abstractions

Duc M. L. Software Engineering 35

Top-level data abstractions (1)

● Find all the top-level abstractions
● Start decomposition with Engine:

● decompose each function
● analyse the sub-tasks (most significant ones first) to

identify other data abstractions
● identify operations of each data abstraction
● (optional) uses UML activity diagram to model

Duc M. L. Software Engineering 36

Top-level data abstractions (2)

● Validate using UML sequence diagram
● Update the design class diagram
● Write/update the representation (rep) of each data

abstraction
● Write/update the specification of each abstraction:

● data &
● procedural

Duc M. L. Software Engineering 37

KEngine: top-level design overview

● Which abstractions can we identify/refine
from the design spec. of previous iteration?

Duc M. L. Software Engineering 38

Engine.queryFirst

Duc M. L. Software Engineering 39

Activity diagram
Check input

word

Create a
new query

Find
matching

documents
Determine

kwd frequencies

Sort the
matching

documents

Query

Duc M. L. Software Engineering 40

D by A (1.1)

• Check that the input string w is a word
• Check that w is an interesting word
• Start a new query with w as the keyword
• For each document, determine if it is a match
• For each document, determine the freq of w
• Sort the matches by freq of w
• Return the query and matches

Duc M. L. Software Engineering 41

D by A (1.2)

● same document is scanned many times (for different queries)
● need a fast look up method to find w in doc
→ record the words of each document when it is processed

<<design note>>

• Check that the input string w is a word
• Check that w is an interesting word
• Start a new query with w as the keyword
• For each document, determine if it is a match
• For each document, determine the freq of w
• Sort the matches by freq of w
• Return the query and matches

Duc M. L. Software Engineering 42

D by A (1.3)

● freqs are likely to be re-used many times (for different queries)
→ record freqs of words when scanning documents

• Check that the input string w is a word
• Check that w is an interesting word
• Start a new query with w as the keyword
• For each document, determine if it is a match
• For each document, determine the freq of w
• Sort the matches by freq of w
• Return the query and matches

Duc M. L. Software Engineering 43

D by A (1.4)

● needs to know the uninteresting words
● needs to maintain both interesting and uninteresting words easily
→ record both types of words in the same abstraction (WordTable)

• Check that the input string w is a word
• Check that w is an interesting word
• Start a new query with w as the keyword
• For each document, determine if it is a match
• For each document, determine the freq of w
• Sort the matches by freq of w
• Return the query and matches

Duc M. L. Software Engineering 44

WordTable

● Stores words
● Has an operation to

check word

WordTable

WordTable()
isInteresting(String): boolean

Duc M. L. Software Engineering 45

D by A (1.5)

● needs to record first keyword in Query

• Check that the input string w is a word
• Check that w is an interesting word
• Start a new query with w as the keyword
• For each document, determine if it is a match
• For each document, determine the freq of w
• Sort the matches by freq of w
• Return the query and matches

Duc M. L. Software Engineering 46

D by A (1.6)

● need to know Doc’s body → create body() in Doc
● need to record the query matches and their freqs:
→ records matches and their freqs in Query

● need a simple way of retrieving each match:
→ create methods size() and fetch(int) in Query

• Check that the input string w is a word
• Check that w is an interesting word
• Start a new query with w as the keyword
• For each document, determine if it is a match
• For each document, determine the freq of w
• Sort the matches by freq of w
• Return the query and matches

Duc M. L. Software Engineering 47

Doc

Doc

Doc(String)
body(): String

Duc M. L. Software Engineering 48

Engine.queryMore

Duc M. L. Software Engineering 49

D & A (2)

• adds a new keyword to an existing query
• repeats the check for the new keyword to filter

the existing matches (if any)

● to record subsequent keywords in Query:
→ create addKey() method to add a new keyword to Query

● (together with 1.5) → create keys() in Query to observe the
keywords

Duc M. L. Software Engineering 50

Query

● Updated with constructor
and the new methods

Query
Query(WordTable, String)
keys(): String[]
size(): int
fetch(int): Doc
addKey(String)

Duc M. L. Software Engineering 51

sd.queryFirst

User

:Engine

:Query
Query(wt, w)

:WordTable

b = isInteresting(w)
queryFirst(w)

alt

:NotPossibleException
NotPossibleException()

[b=true]

[else]

Duc M. L. Software Engineering 52

sd.queryMore

NotPossibleException()

User

:Engine

:Query
addKey(w)

:WordTable

b = isInteresting(w)

queryMore(w)

alt
[b=true]

[else]

:NotPossibleException

Duc M. L. Software Engineering 53

Engine.findDoc

Duc M. L. Software Engineering 54

D & A (3)

• For each document, determine if its title
matches the given title

• Return the first matching document

● document has title → create method title() in Doc
● document titles are re-used many times to determine matches
● needs a fast method to look up document matching a title
→ records documents and their titles in TitleTable

Duc M. L. Software Engineering 55

Doc

Doc

Doc(String)
title(): String
body(): String

Duc M. L. Software Engineering 56

TitleTable

● Stores documents
● Has operations to

look up documents

TitleTable

TitleTable()
lookUp(String): Doc

Duc M. L. Software Engineering 57

sd.findDoc

User

:Engine

findDoc(s): Doc

:TitleTable

 lookUp(s): Doc

Duc M. L. Software Engineering 58

Engine.addDocs

Duc M. L. Software Engineering 59

D & A (4.1)

• Contact the site with the given URL
• Retrieve documents from the site
• Add documents to the collection
• Update an existing query (if one is in progress)

or creates an empty query object
• Returns the query object
● needs to get documents from a remote web site
→ create a getDocs() method that returns an Iterator object for

the documents

Duc M. L. Software Engineering 60

Comm.getDocs

● A new abstraction Comm
● Added Comm.getDocs

Comm

getDocs(): Iterator

Duc M. L. Software Engineering 61

D & A (4.2)

• Contact the site with the given URL
• Retrieve documents from the site
• Add documents to the collection
• Update an existing query (if one is in progress)

or creates an empty query object
• Returns the query object
● need to add each document to TitleTable & WordTable
→ create method TitleTable.addDoc
→ create method WordTable.addDoc

Duc M. L. Software Engineering 62

WordTable

WordTable()
isInteresting(String): boolean
addDoc(Doc)

WordTable

Duc M. L. Software Engineering 63

TitleTable

TitleTable()
lookUp(String): Doc
addDoc(Doc)

TitleTable

Duc M. L. Software Engineering 64

D & A (4.3)

→ creates addDoc() method to add a new document to Query

• Contact the site with the given URL
• Retrieve documents from the site
• Add documents to the collection
• Update an existing query (if one is in progress)

or creates an empty query object
• Returns the query object

Duc M. L. Software Engineering 65

Query

● Updated with addDoc
method

Query
Query(WordTable, String)
keys(): String[]
size(): int
fetch(int): Doc
addKey(String)
addDoc(Doc)

Duc M. L. Software Engineering 66

Doc

● Updated with a constructor to
create Doc object from a string

Doc

Doc(String)
title(): String
body(): String

Duc M. L. Software Engineering 67

sd.addDocs

User

:Engine

addDocs(url): Query

:WordTable

addDoc()

:TitleTable

:Comm

 Iterator dit = getDocs(url)

addDoc()

:QueryQuery()

alt

addDoc()

[query = null]

[else]

loop
[dit.hasNext()]

Duc M. L. Software Engineering 68

Design class diagram &
specification

Duc M. L. Software Engineering 69

Design class diagram

WordTable

WordTable()
isInteresting(String): boolean
addDoc(Doc)

Query
Query(WordTable, String)
keys(): String[]
size(): int
fetch(int): Doc
addKey(String)
addDoc(Doc)

TitleTable

TitleTable()
addDoc(Doc)
lookUp(String): Doc

Comm

getDocs(): Iterator

Doc

Doc(String)
title(): String
body(): String

Engine

Engine()
queryfirst(String): Query
queryMore(String): Query
findDoc(String): Doc
addDocs(String): Query

Duc M. L. Software Engineering 70

Engine rep

● Determined from:
● specifications of the methods
● associations with other abstractions

Duc M. L. Software Engineering 71

Engine

Engine()
queryfirst(String): Query
queryMore(String): Query
findDoc(String): Doc
addDocs(String): Query

- wt: WordTable
- t: TitleTable
- q: Query
- urls: String[]

Engine rep

Duc M. L. Software Engineering 72

Engine specification
/**
 * @overview ...(omitted)...
 * @version (iteration) 1.0
 */
class Engine {
 @DomainConstraint(type="WordTable",optional=false)
 private WordTable wt;
 @DomainConstraint(type="TitleTable",optional=false)
 private TitleTable tt;
 @DomainConstraint(type="Query")
 private Query q;

 private String[] urls;
 ///// END version 1.0
} // end Engine

Duc M. L. Software Engineering 73

WordTable (1)

/**
 * @overview Keeps track of interesting and uninteresting words.
 * Uninteresting words are obtained from a private file.
 * Records number of times each interesting word occurs in a document.
 * @version (iteration) 1.0
 */
class WordTable {

 /**
 * @effects
 * If uninteresting-word file cannot be read
 * throws NotPossibleException
 * else initialises this to contain all words in the file
 */
 WordTable() throws NotPossibleException

Duc M. L. Software Engineering 74

WordTable (2)

 /**
 * @effects
 * If w is null or a nonword or an uninteresting word
 * returns false
 * else returns true
 */
 boolean isInteresting(String w)

 /**
 * @requires d is not null
 * @modifies this
 * @effects adds to this interesting words of d
 * with their numbers of occurrences
 */
 void addDoc(Doc d)
} // end WordTable

Duc M. L. Software Engineering 75

Query (1)
/**
 * @overview
 * Provides information about the keywords of a query and
 * the documents that match those keywords.
 * Documents are accessed using indexes between 0 and size.
 * Documents are ordered by the number of matches they
 * contain, with document 0th containing the most matches.
 * @version (iteration) 1.0
 */
class Query {
 /**
 * @effects returns an empty query
 */
 Query()

Duc M. L. Software Engineering 76

Query (2)
 /**
 * @effects returns a count of the documents that match query
 */
 int size()

 /**
 * @effects
 * If 0 <= i < size
 * returns the ith matching document
 * else
 * throws IndexOutOfBoundException
 */
 Doc fetch (int i) throws IndexOutOfBoundException

 /**
 * @effects returns the keywords of this
 */
 String[] keys()

Duc M. L. Software Engineering 77

Query (3)
 /**
 * @requires w is not null
 * @modifies this
 * @effects
 * If this is empty or w is already a keyword in this
 * throws NotPossibleException
 * else modifies this to contain w and all keywords already in this
 */
 void addKey(String w) throws NotPossibleException

 /**
 * @requires d is not null
 * @modifies this
 * @effects
 * If this is not empty and d contains all the keywords of this
 * adds d to this as a query result
 * else do nothing
 */
 void addDoc(Doc d)
} // end Query

Duc M. L. Software Engineering 78

TitleTable (1)

/**
 * @overview
 * Keeps track of documents and their titles.
 *
 * @author dmle
 *
 * @version (iteration) 1.0
 */
class TitleTable {

 /**
 * @effects Initialises this to be empty
 */
 TitleTable()

Duc M. L. Software Engineering 79

TitleTable (2)
 /**
 * @requires d is not null
 * @modifies this
 * @effects
 * If a document with d's title already in this
 * throws DuplicateException
 * else adds d with its title to this
 */
 void addDoc(Doc d) throws DuplicateException

 /**
 * @effects
 * If t is null or there is no document with title t in this
 * throws NotPossibleException
 * else returns the document with title t
 */
 Doc lookUp(String t) throws NotPossibleException
} // end TitleTable

Duc M. L. Software Engineering 80

Comm.getDocs

/**
 * @overview
 * Represents the communication module responsible for obtaining
 * documents from remote sites.
 * @version (iteration) 1.0
 */
public class Comm {
 /**
 * @effects
 * If u isn't a valid URL or the site it names fails to respond
 * throws NotPossibleException
 * else returns a generator for documents from site u
 * (as strings)
 */
 static Iterator getDocs (String u) throws NotPossibleException
} // end Comm

Duc M. L. Software Engineering 81

Tutorial

● Program trio: iterations 0, 1

EXer
cise

Duc M. L. Software Engineering 82

ITERATION 2
Refinement

Duc M. L. Software Engineering 83

Selection criteria for abstractions

● Specification is complete but not yet refined
● Has uncertainty
● Increase insight into the design
● Help finish up a part of a design

Duc M. L. Software Engineering 84

KEngine: which abstraction?

● Three candidates:
● Comm.getDocs
● TitleTable
● Query

● Which one to start first?
● Comm is considered part of the library, i.e. given
● TitleTable and Query are both likely
● starts with TitleTable (helps gain further insight into

Doc)

Duc M. L. Software Engineering 85

TitleTable

Duc M. L. Software Engineering 86

D & A (5.1)

● addDoc:
● extracts title from document

● lookup:
● finds a document given its title

● uses Doc.title() method

Duc M. L. Software Engineering 87

TitleTable

TitleTable()
addDoc(Doc)
lookUp(String): Doc

- docs: Hashtable

D & A (5.2)

● addDoc:
● extracts title from document

● lookup:
● finds a document given its title

● document titles are re-used many times
● requires a data structure that maps Docs to strings
→ uses java.util.Hashtable as the rep of TitleTable

Duc M. L. Software Engineering 88

Query

Duc M. L. Software Engineering 89

→ creates WordTable.lookUp method

D & A (6.1)

● Query(WordTable, String):
● find all the documents that contain the keyword

with its count
● keep track of the keyword
● sort the documents based on the number of

occurrences of keywords

Duc M. L. Software Engineering 90

→ creates String[] keys in Query to store keywords

D & A (6.2)

● Query(WordTable, String):
● find all the documents that contain the keyword

with its count
● keep track of the keyword
● sort the documents based on the number of

occurrences of keywords

Duc M. L. Software Engineering 91

Query

Query(WordTable, String)
keys(): String[]
size(): int
fetch(int): Doc
addKey(String)
addDoc(Doc)

- k: WordTable
- keys: String[]

Query & WordTable

WordTable

WordTable()
isInteresting(String): boolean
lookUp(String): Vector
addDoc(Doc)

Duc M. L. Software Engineering 92

→ sorts documents by keyword frequencies (e.g. using sorted
tree)
● also see 6.7

D & A (6.3)

● Query(WordTable, String):
● find all the documents that contain the keyword

with its count
● keep track of the keyword
● sort the documents based on the number of

occurrences of keywords

Duc M. L. Software Engineering 93

→ needs an index-based collection to store documents (e.g.
Vector)
● also see 6.7

D & A (6.4)

● fetch(int):
● retrieves the ith document from the current

matches

Duc M. L. Software Engineering 94

→ performed by checking the Query.keys array

D & A (6.5)

● addKey(String):
● check the new keyword for duplicacy
● find documents containing the new keyword
● find the new documents that are in the query
● sort the matches by the sums of the frequencies

Duc M. L. Software Engineering 95

→ uses WordTable.lookUp method

D & A (6.6)

● addKey(String):
● check the new keyword for duplicacy
● find documents containing the new keyword
● find the new documents that are in the query
● sort the matches by the sums of the frequencies

Duc M. L. Software Engineering 96

● needs a fast way to look up document
● also see 6.4
● needs to maintain the sum of frequencies for each match
● needs to sort matches by this sum
→ creates DocCnt<Document,Count> abstraction for matches
→ uses Vector to store matches (DocCnt objects)
→ uses quick-sort to sort this vector

D & A (6.7)

● addKey(String):
● check the new keyword for duplicacy
● find documents containing the new keyword
● find the new documents that are in the query
● sort the matches by the sums of the frequencies

Duc M. L. Software Engineering 97

DocCnt

Comparable
compareTo(Object o)

DocCnt
- d: Doc
- cnt: int
DocCnt(Doc, int)
getDoc(): Doc
getCount: int
toString(): String

Duc M. L. Software Engineering 98

Sorting

● Sorting.quickSort(Vector)
● adapts quick-sort for Comparable objects

Sorting

quickSort(Vector)

Duc M. L. Software Engineering 99

Query

Query(WordTable, String)
keys(): String[]
size(): int
fetch(int): Doc
addKey(String)
addDoc(Doc)

- k: WordTable
- matches: Vector
- keys: String[]

Query

Duc M. L. Software Engineering 100

● needs to know the document keywords and their frequencies,
 but can be provided by WordTable.addDoc (see sd.addDocs):
→ updates WordTable.addDoc to return a Hashtable mapping
 keywords to their frequencies
→ modify Query.addDoc(Doc) to become Query.addDoc(Doc,

Hashtable)

D & A (6.8)

● addDoc(Doc):
● check each current keyword in the document
● if so, add doc to matches
● update sorting of matches

Duc M. L. Software Engineering 101

WordTable

WordTable

WordTable()
isInteresting(String): boolean
lookUp(String): Vector
addDoc(Doc): Hashtable

Duc M. L. Software Engineering 102

Query

Query(WordTable, String)
keys(): String[]
size(): int
fetch(int): Doc
addKey(String)
addDoc(Hashtable, Doc)

- k: WordTable
- matches: Vector
- keys: String[]

Query

Duc M. L. Software Engineering 103

WordTable

Duc M. L. Software Engineering 104

● needs access to an iterator method of Doc that iterates over all
 words
→ creates Doc.words(): Iterator method

● needs to record for each keyword a set of DocCnt objects
→ adds WordTable.table to map keyword to Vector of DocCnts

● needs to consider canonical word forms, e.g. student ~ Student
→ creates Helpers.canon method to convert words to a common
 format (e.g. lower case)

D & A (7)

● addDoc(Doc):
● for each word in doc, if it is interesting then creates

a DocCnt object from doc and maps it to word
● also adds the mapping <word,DocCnt> to a hash

table that is returned as the result

Duc M. L. Software Engineering 105

Doc

Doc

Doc(String)
title(): String
body(): String
words(): Iterator

Duc M. L. Software Engineering 106

WordTable

WordTable()
isInteresting(String): boolean
lookUp(String): Vector
addDoc(Doc): Hashtable

- table: Hashtable

WordTable

Duc M. L. Software Engineering 107

Helpers

Helpers

canon(String): String

Duc M. L. Software Engineering 108

sd.addDocs

User

:Engine

addDocs(url): Query

:WordTable

Hashtable h = addDoc(d)

:TitleTable

:Comm

 Iterator dit = getDocs(url)

addDoc(d)

:QueryQuery()

alt

addDoc(h,d)

[query = null]

[else]

loop
[dit.hasNext()]
Doc d = dit.next()

Duc M. L. Software Engineering 109

sd.addDocs

User

:Engine

addDocs(url): Query

:WordTable

Hashtable h = addDoc(d)

:TitleTable

:Comm

 Iterator dit = getDocs(url)

addDoc(d)

:QueryQuery()

alt

addDoc(h,d)

[query = null]

[else]

loop
[dit.hasNext()]
Doc d = dit.next()

refined messages
showing the

design updates

Duc M. L. Software Engineering 110

sd.queryFirst

User

:Engine

:Query
Query(wt, w)

:WordTable

b = isInteresting(w)
queryFirst(w)

alt [b=true]

[else]

:NotPossibleException
NotPossibleException()

ref Query(wt,w)

Duc M. L. Software Engineering 111

sd.queryFirst

User

:Engine

:Query
Query(wt, w)

:WordTable

b = isInteresting(w)
queryFirst(w)

alt [b=true]

[else]

:NotPossibleException
NotPossibleException()

ref Query(wt,w)

more detailed
decomposition

Duc M. L. Software Engineering 112

sd.Query(wt,w)

:Query :Sorting:WordTable

Vector dcs = lookUp(w)

quickSort(m)

 m.addAll(dcs)

sd Query(WordTable wt, String w)

Duc M. L. Software Engineering 113

Design class diagram &
specification

Duc M. L. Software Engineering 114

Design class diagram

Query
Query()
Query(WordTable, String)
keys(): String[]
size(): int
fetch(int): Doc
addKey(String)
addDoc(Doc)

Comm

getDocs(): Iterator

Engine

Engine()
queryfirst(String): Query
queryMore(String): Query
findDoc(String): Doc
addDocs(String): Query

DocCnt
Doc d
int freqCount

Comparable

Sorting

quickSort(Vector)

Helpers

canon(String): String

Doc

Doc(String)
title(): String
body(): String
words(): Iterator

WordTable

WordTable()
isInteresting(String): boolean
lookUp(String): Vector
addDoc(Doc): Hashtable

Hashtable table

TitleTable

TitleTable()
addDoc(Doc)
lookUp(String): Doc

Hashtable docs

Duc M. L. Software Engineering 115

Query implementation sketches (1)

 /**
 * @requires wt and w are not null
 * @effects initialises this to contain w
 *
 * @pseudocode <pre>--- implementation sketch -----
 lookup the key in the WordTable
 sort the matches using quickSort</pre>
 */
 Query(WordTable wt, String w)

Duc M. L. Software Engineering 116

Query Implementation sketches (2)

 /**
 * @requires ...
 * @modifies ...
 * @effects ...
 *
 * @pseudocode <pre>--- implementation sketch -----
 lookup the new key in the WordTable
 store information about the matches in a hash table
 for each current match, look up document in the
 hash table and if it is there, store in a vector
 sort the vector using quickSort </pre>
 */
 void addKey(String w) throws NotPossibleException

Duc M. L. Software Engineering 117

Query Implementation sketches (3)

 /**
 * @requires ...
 * @modifies ...
 * @effects ...
 *
 * @pseudocode <pre>--- implementation sketch -----
 use the argument table to get the number of occurrences
 of each current key
 if the document has all the keywords, compute the sum
 and insert the (doc,sum) pair in the vector of matches
 </pre>
 */
 void addDoc(Doc d)

Duc M. L. Software Engineering 118

Reflection

Duc M. L. Software Engineering 119

Design process

● Top-down design approach:
● decomposition by abstraction

● Abstractions are:
● created as needed
● refined as necessary

● Design updates make use of design/sequence
diagrams

Duc M. L. Software Engineering 120

Tutorial

● Program trio: refinement iterations

EXer
cise

Duc M. L. Software Engineering 121

Summary

● Object oriented software design is supported by the
UML modelling language

● Design aims to be adequate (not necessarily perfect)
● Design is iterative with later iterations reveal more

details about the software structure
● Design is validated using sequence diagrams

Duc M. L. Software Engineering 122

Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122

