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Positive or negative movie review?
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...zany characters and richly applied satire, and some 
great plot twists

It was pathetic. The worst part about it was the boxing 
scenes...

...awesome caramel sauce and sweet toasty almonds. I 
love this place! 

...awful pizza and ridiculously overpriced... 
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Text Classification Tasks
6

■ Sentiment analysis
■ Spam detection
■ Language identification
■ Assignining categories to news articles
■ …



Text Classification: definition
7

■ Input:
a document d
a fixed set of classes 𝐶 = {𝑐!, 𝑐", … , 𝑐#}

■ Output: 
a predicted class 𝑐 ∈ 𝐶



Classification Methods: Hand-coded rules
8

■ Rules based on combination of words and other 
features

spam: black-list-address OR (“dollars” AND “have been 
selected”)

■ Accuracy can be high
If rules carefully refined by expert

But building and maintaining these rules is expensive



Classification Methods:
Supervised Machine Learning

9

Input:
■ a document d
■ a fixed set of classes 𝐶 = {𝑐!, 𝑐", … , 𝑐#}
■ A training set of m hand-labeled documents 𝐷 =
{ 𝑑!, 𝑐! , … , 𝑑$ , 𝑐$ }

Output:
■ A learned classifier γ: 𝑑 → 𝑐
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Any kinds of classifier
■ Naïve Bayes
■ Logistic regression
■ Neural networks
■ k-Nearest Neighbors
■ …

Classification Methods:
Supervised Machine Learning
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Naïve Bayes Intuition
12

■ Simple (“naïve”) classification method based on 
Bayes rule

■ Relies on very simple representation of document
Bag of words



The bag of words representation 
13



The bag of words representation
14

γ( )=c
seen 2
sweet 1

whimsical 1

recommend 1
happy 1

... ...



Bayes’ Rule Applied to Documents and Classes
15

■ For a document d and a class c

𝑃 𝑐 𝑑 =
𝑃 𝑑 𝑐 𝑃(𝑐)

𝑃(𝑑)



Naïve Bayes Classifier (1)
16

■ The	classifier	returns	the	class	�̂� which	has	the	
maximum	posterior	probability	(MAP)	given	the	
document

�̂� = argmax
%∈'

𝑃(𝑐|𝑑)

= argmax
%∈'

𝑃 𝑑 𝑐 𝑃(𝑐)
𝑃(𝑑)

= argmax
%∈'

𝑃 𝑑 𝑐 𝑃(𝑐)

Bayes Rule

Drop P(x) because P(x) 
is the same for all 
classes



Naïve Bayes Classifier (2)
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■ Document d is represented as features (𝑥!, … , 𝑥()

�̂� = argmax
%∈'

𝑃 𝑑 𝑐 𝑃(𝑐)

= argmax
%∈'

𝑃 𝑥!, 𝑥", … , 𝑥( 𝑐 𝑃(𝑐)

"Likelihood" "Prior"



Multinomial Naïve Bayes Independence 
Assumptions

18

𝑃(𝑥!, 𝑥", … , 𝑥(|𝑐)

■ Bag of Words assumption: Assume position doesn’t 
matter

■ Conditional Independence: Assume the feature 
probabilities 𝑃(𝑥)|𝑐) are independent given the 
class c 

𝑃 𝑥!, 𝑥", … , 𝑥( 𝑐 = 𝑃 𝑥! 𝑐 𝑃 𝑥" 𝑐 …𝑃 𝑥( 𝑐



Multinomial Naïve Bayes Classifier
19

𝑐*+, = argmax
%∈'

𝑃 𝑥!, 𝑥", … , 𝑥( 𝑐 𝑃(𝑐)

𝑐-. = argmax
%∈'

𝑃(𝑐)N
)/!

(

𝑃(𝑥)|𝑐)



Applying Naïve Bayes Classifiers to 
Text Classification

20

positions ← all word positions in test documents

𝑐-. = argmax
%∈'

𝑃(𝑐) N
)∈012)3)1(2

𝑃(𝑤)|𝑐)



Problems with multiplying lots of probs
21

𝑐-. = argmax
%∈'

𝑃(𝑐) N
)∈012)3)1(2

𝑃(𝑤)|𝑐)

Multiplying lots of probabilities can result in floating-
point underflow!
.0006 * .0007 * .0009 * .01 * .5 * .000008….

Idea:   Use logs, because  log(ab) = log(a) + log(b)
We'll sum logs of probabilities instead of multiplying 
probabilities!



Calculating in log space
22

Instead of this: 

𝑐!" = argmax
#∈%

𝑃(𝑐) +
&∈'()&*&(+)

𝑃(𝑤&|𝑐)

Use: 

𝑐!" = argmax
#∈%

log 𝑃(𝑐) + 1
&∈'()&*&(+)

log 𝑃(𝑤&|𝑐)

Notes:
1) Taking log doesn't change the ranking of classes!
- The class with highest probability also has highest log probability!
2) It's a linear model:
- Just a max of a sum of weights: a linear function of the inputs
- So naive bayes is a linear classifier
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Learning the Multinomial Naive Bayes Model
24

Maximum likelihood estimation (MLE)
Q𝑃 𝑐 = -!

-
𝑁$ is the number of documents in class c and N is the total 
number of documents

*𝑃 𝑤% 𝑐 =
count 𝑤%, 𝑐

∑&∈( count 𝑤, 𝑐
count(w, c) is the count of the number of word w occurs in 
documents of class c in the training data



Parameter Estimation
25

Q𝑃 𝑤) 𝑐 =
count 𝑤) , 𝑐

∑4∈5 count 𝑤, 𝑐

fraction of times word wi appears among all words in 
documents of topic c

Create mega-document for topic j by concatenating all 
docs in this topic
■ Use frequency of w in mega-document



Problem with Maximum Likelihood
26

■ MLE estimate gets zero for a term-class 
combination that did not occur in the training data. 

■ E.g., what if we have seen no training documents 
with the word fantastic
*𝑃 “fantastic” positive =

count “fantastic”, positive
∑&∈( count 𝑤, positive

= 0



Laplace (add-1) smoothing for Naïve Bayes
27

Q𝑃 𝑤) 𝑐 =
count 𝑤) , 𝑐 + 1

∑4∈5(count 𝑤, 𝑐 + 1)

=
count 𝑤) , 𝑐 + 1

(∑4∈5 count 𝑤, 𝑐 ) + |𝑉|



Multinomial Naïve Bayes: Learning
28

Calculate P(cj) terms
For each cj in C do

docsj¬ all docs with  class 
=cj

P(wk | cj )←
nk +α

n+α |Vocabulary |

Calculate P(wk | cj) terms
• Textj¬ single doc containing all docsj
• For each word wk in Vocabulary

nk¬ # of occurrences of wk in Textj

• From training corpus, extract Vocabulary



Unknown words
29

■ What about unknown words
that appear in our test data 
but not in our training data or vocabulary?

■ We ignore them
Remove them from the test document!
Pretend they weren't there!
Don't include any probability for them at all!

■ Why don't we build an unknown word model?
It doesn't help: knowing which class has more unknown 
words is not generally helpful!



Stop words
30

Some systems ignore stop words
■ Stop words: very frequent words like the and a.

Sort the vocabulary by word frequency in training set
Call the top 10 or 50 words the stopword list.
Remove all stop words from both training and test sets
■ As if they were never there!

But removing stop words doesn't usually help
■ So in practice most NB algorithms use all words and 

don't use stopword lists
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Let's do a worked sentiment example!

4.3 • WORKED EXAMPLE 7

4.3 Worked example

Let’s walk through an example of training and testing naive Bayes with add-one
smoothing. We’ll use a sentiment analysis domain with the two classes positive
(+) and negative (-), and take the following miniature training and test documents
simplified from actual movie reviews.

Cat Documents
Training - just plain boring

- entirely predictable and lacks energy
- no surprises and very few laughs
+ very powerful
+ the most fun film of the summer

Test ? predictable with no fun

The prior P(c) for the two classes is computed via Eq. 4.11 as Nc
Ndoc

:

P(�) =
3
5

P(+) =
2
5

The word with doesn’t occur in the training set, so we drop it completely (as
mentioned above, we don’t use unknown word models for naive Bayes). The like-
lihoods from the training set for the remaining three words “predictable”, “no”, and
“fun”, are as follows, from Eq. 4.14 (computing the probabilities for the remainder
of the words in the training set is left as an exercise for the reader):

P(“predictable”|�) =
1+1

14+20
P(“predictable”|+) =

0+1
9+20

P(“no”|�) =
1+1

14+20
P(“no”|+) =

0+1
9+20

P(“fun”|�) =
0+1

14+20
P(“fun”|+) =

1+1
9+20

For the test sentence S = “predictable with no fun”, after removing the word ‘with’,
the chosen class, via Eq. 4.9, is therefore computed as follows:

P(�)P(S|�) =
3
5
⇥ 2⇥2⇥1

343 = 6.1⇥10�5

P(+)P(S|+) =
2
5
⇥ 1⇥1⇥2

293 = 3.2⇥10�5

The model thus predicts the class negative for the test sentence.

4.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis,
some small changes are generally employed that improve performance.

First, for sentiment classification and a number of other text classification tasks,
whether a word occurs or not seems to matter more than its frequency. Thus it
often improves performance to clip the word counts in each document at 1 (see
the end of the chapter for pointers to these results). This variant is called binary
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1. Prior from training:

P(-) = 3/5
P(+) = 2/5

2. Drop "with"
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3. Likelihoods from training:

4. Scoring the test set:𝑝 𝑤! 𝑐 =
𝑐𝑜𝑢𝑛𝑡 𝑤!, 𝑐 + 1

∑"∈$ 𝑐𝑜𝑢𝑛𝑡 𝑤, 𝑐 + |𝑉|

:𝑃 𝑐% =
𝑁&!
𝑁'(')*



Optimizing for sentiment analysis

For tasks like sentiment, word occurrence seems to be 
more important than word frequency.

■ The occurrence of the word fantastic tells us a lot
■ The fact that it occurs 5 times may not tell us much more.

Binary multinominal naive bayes, or binary NB
Clip our word counts at 1
Note: this is different than Bernoulli naive bayes; see the 
textbook at the end of the chapter.



Binary Multinomial Naive Bayes
on a test document d

35

■ First remove all duplicate words from d
■ Then compute NB using the same equation: 

cNB = argmax
c j∈C

P(cj ) P(wi | cj )
i∈positions
∏



Binary multinominal naive Bayes

8 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

multinomial naive Bayes or binary NB. The variant uses the same Eq. 4.10 exceptbinary NB

that for each document we remove all duplicate words before concatenating them
into the single big document. Fig. 4.3 shows an example in which a set of four
documents (shortened and text-normalized for this example) are remapped to binary,
with the modified counts shown in the table on the right. The example is worked
without add-1 smoothing to make the differences clearer. Note that the results counts
need not be 1; the word great has a count of 2 even for Binary NB, because it appears
in multiple documents.

Four original documents:
� it was pathetic the worst part was the

boxing scenes
� no plot twists or great scenes
+ and satire and great plot twists
+ great scenes great film

After per-document binarization:
� it was pathetic the worst part boxing

scenes
� no plot twists or great scenes
+ and satire great plot twists
+ great scenes film

NB Binary
Counts Counts
+ � + �

and 2 0 1 0
boxing 0 1 0 1
film 1 0 1 0
great 3 1 2 1
it 0 1 0 1
no 0 1 0 1
or 0 1 0 1
part 0 1 0 1
pathetic 0 1 0 1
plot 1 1 1 1
satire 1 0 1 0
scenes 1 2 1 2
the 0 2 0 1
twists 1 1 1 1
was 0 2 0 1
worst 0 1 0 1

Figure 4.3 An example of binarization for the binary naive Bayes algorithm.

A second important addition commonly made when doing text classification for
sentiment is to deal with negation. Consider the difference between I really like this
movie (positive) and I didn’t like this movie (negative). The negation expressed by
didn’t completely alters the inferences we draw from the predicate like. Similarly,
negation can modify a negative word to produce a positive review (don’t dismiss this
film, doesn’t let us get bored).

A very simple baseline that is commonly used in sentiment analysis to deal with
negation is the following: during text normalization, prepend the prefix NOT to
every word after a token of logical negation (n’t, not, no, never) until the next punc-
tuation mark. Thus the phrase

didn’t like this movie , but I

becomes

didn’t NOT_like NOT_this NOT_movie , but I

Newly formed ‘words’ like NOT like, NOT recommend will thus occur more of-
ten in negative document and act as cues for negative sentiment, while words like
NOT bored, NOT dismiss will acquire positive associations. We will return in Chap-
ter 16 to the use of parsing to deal more accurately with the scope relationship be-
tween these negation words and the predicates they modify, but this simple baseline
works quite well in practice.

Finally, in some situations we might have insufficient labeled training data to
train accurate naive Bayes classifiers using all words in the training set to estimate
positive and negative sentiment. In such cases we can instead derive the positive
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into the single big document. Fig. 4.3 shows an example in which a set of four
documents (shortened and text-normalized for this example) are remapped to binary,
with the modified counts shown in the table on the right. The example is worked
without add-1 smoothing to make the differences clearer. Note that the results counts
need not be 1; the word great has a count of 2 even for Binary NB, because it appears
in multiple documents.

Four original documents:
� it was pathetic the worst part was the

boxing scenes
� no plot twists or great scenes
+ and satire and great plot twists
+ great scenes great film

After per-document binarization:
� it was pathetic the worst part boxing

scenes
� no plot twists or great scenes
+ and satire great plot twists
+ great scenes film

NB Binary
Counts Counts
+ � + �

and 2 0 1 0
boxing 0 1 0 1
film 1 0 1 0
great 3 1 2 1
it 0 1 0 1
no 0 1 0 1
or 0 1 0 1
part 0 1 0 1
pathetic 0 1 0 1
plot 1 1 1 1
satire 1 0 1 0
scenes 1 2 1 2
the 0 2 0 1
twists 1 1 1 1
was 0 2 0 1
worst 0 1 0 1

Figure 4.3 An example of binarization for the binary naive Bayes algorithm.

A second important addition commonly made when doing text classification for
sentiment is to deal with negation. Consider the difference between I really like this
movie (positive) and I didn’t like this movie (negative). The negation expressed by
didn’t completely alters the inferences we draw from the predicate like. Similarly,
negation can modify a negative word to produce a positive review (don’t dismiss this
film, doesn’t let us get bored).

A very simple baseline that is commonly used in sentiment analysis to deal with
negation is the following: during text normalization, prepend the prefix NOT to
every word after a token of logical negation (n’t, not, no, never) until the next punc-
tuation mark. Thus the phrase

didn’t like this movie , but I

becomes

didn’t NOT_like NOT_this NOT_movie , but I

Newly formed ‘words’ like NOT like, NOT recommend will thus occur more of-
ten in negative document and act as cues for negative sentiment, while words like
NOT bored, NOT dismiss will acquire positive associations. We will return in Chap-
ter 16 to the use of parsing to deal more accurately with the scope relationship be-
tween these negation words and the predicates they modify, but this simple baseline
works quite well in practice.

Finally, in some situations we might have insufficient labeled training data to
train accurate naive Bayes classifiers using all words in the training set to estimate
positive and negative sentiment. In such cases we can instead derive the positive

Counts can still be 2! Binarization is within-doc!
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■ The Task of Text Classification
■ The Naïve Bayes Text Classifier
■ Naïve Bayes: Learning
■ Sentiment and Binary Naïve Bayes
■ Accuracy, Precision, Recall, and F measure



Evaluation
41

■ Let's consider just binary text classification tasks
■ Imagine you're the CEO of Delicious Pie Company
■ You want to know what people are saying about 

your pies
■ So you build a "Delicious Pie" tweet detector

Positive class: tweets about Delicious Pie Co
Negative class: all other tweets



The 2-by-2 confusion matrix
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4.7 • EVALUATION: PRECISION, RECALL, F-MEASURE 11

As it happens, the positive model assigns a higher probability to the sentence:
P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes
model; once we multiply in the prior a full naive Bayes model might well make a
different classification decision.

4.7 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let’s first consider some
simple binary detection tasks. For example, in spam detection, our goal is to label
every text as being in the spam category (“positive”) or not in the spam category
(“negative”). For each item (email document) we therefore need to know whether
our system called it spam or not. We also need to know whether the email is actually
spam or not, i.e. the human-defined labels for each document that we are trying to
match. We will refer to these human labels as the gold labels.gold labels

Or imagine you’re the CEO of the Delicious Pie Company and you need to know
what people are saying about your pies on social media, so you build a system that
detects tweets concerning Delicious Pie. Here the positive class is tweets about
Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or
pie-tweet-detector) is doing. To evaluate any system for detecting things, we start
by building a confusion matrix like the one shown in Fig. 4.4. A confusion matrixconfusion

matrix
is a table for visualizing how an algorithm performs with respect to the human gold
labels, using two dimensions (system output and gold labels), and each cell labeling
a set of possible outcomes. In the spam detection case, for example, true positives
are documents that are indeed spam (indicated by human-created gold labels) that
our system correctly said were spam. False negatives are documents that are indeed
spam but our system incorrectly labeled as non-spam.

To the bottom right of the table is the equation for accuracy, which asks what
percentage of all the observations (for the spam or pie examples that means all emails
or tweets) our system labeled correctly. Although accuracy might seem a natural
metric, we generally don’t use it for text classification tasks. That’s because accuracy
doesn’t work well when the classes are unbalanced (as indeed they are with spam,
which is a large majority of email, or with tweets, which are mainly not about pie).

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall = 
tp

tp+fn

precision = 
tp

tp+fp

accuracy = 
tp+tn

tp+fp+tn+fn

Figure 4.4 A confusion matrix for visualizing how well a binary classification system per-
forms against gold standard labels.

To make this more explicit, imagine that we looked at a million tweets, and
let’s say that only 100 of them are discussing their love (or hatred) for our pie,
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■ Why don't we use accuracy as our metric?
■ Imagine we saw 1 million tweets

100 of them talked about Delicious Pie Co.
999,900 talked about something else

■ We could build a dumb classifier that just labels 
every tweet "not about pie"

It would get 99.99% accuracy!!! Wow!!!!
But useless! Doesn't return the comments we are 
looking for!
That's why we use precision and recall instead
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% of items the system detected (i.e., items the system 
labeled as positive) that are in fact positive (according 
to the human gold labels) 
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while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)
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% of items actually present in the input that were 
correctly identified by the system.
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There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:
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(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
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Our dumb pie-classifier
Just label nothing as "about pie"

Accuracy=99.99%
but

Recall = 0
(it doesn't get any of the 100 Pie tweets)

Precision and recall, unlike accuracy, emphasize true 
positives:

finding the things that we are supposed to be looking 
for. 
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■ F measure: a single number that combines P and R:

■ We almost always use balanced F1 (i.e., b = 1)
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true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:
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while the other 999,900 are tweets about something completely unrelated. Imagine a
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■ Classifier1: P:0.53, R:0.36
■ Classifier2: P:0.01, R:0.99

Harmonic Average

0.429 0.445

0.019 0.500



Confusion Matrix for 3-class classification
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Harmonic mean is used because it is a conservative metric; the harmonic mean of
two values is closer to the minimum of the two values than the arithmetic mean is.
Thus it weighs the lower of the two numbers more heavily.

4.7.1 Evaluating with more than two classes
Up to now we have been describing text classification tasks with only two classes.
But lots of classification tasks in language processing have more than two classes.
For sentiment analysis we generally have 3 classes (positive, negative, neutral) and
even more classes are common for tasks like part-of-speech tagging, word sense
disambiguation, semantic role labeling, emotion detection, and so on. Luckily the
naive Bayes algorithm is already a multi-class classification algorithm.

8
5

10
60

urgent normal
gold labels

system
output

recallu = 
8

8+5+3

precisionu= 
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls = 

precisionn= 
60

5+60+50

precisions= 
200

3+30+200

60
10+60+30

200
1+50+200

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

But we’ll need to slightly modify our definitions of precision and recall. Con-
sider the sample confusion matrix for a hypothetical 3-way one-of email catego-
rization decision (urgent, normal, spam) shown in Fig. 4.5. The matrix shows, for
example, that the system mistakenly labeled one spam document as urgent, and we
have shown how to compute a distinct precision and recall value for each class. In
order to derive a single metric that tells us how well the system is doing, we can com-
bine these values in two ways. In macroaveraging, we compute the performancemacroaveraging
for each class, and then average over classes. In microaveraging, we collect the de-microaveraging

cisions for all classes into a single confusion matrix, and then compute precision and
recall from that table. Fig. 4.6 shows the confusion matrix for each class separately,
and shows the computation of microaveraged and macroaveraged precision.

As the figure shows, a microaverage is dominated by the more frequent class (in
this case spam), since the counts are pooled. The macroaverage better reflects the
statistics of the smaller classes, and so is more appropriate when performance on all
the classes is equally important.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset



How to combine P/R from 3 classes to get one metric
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Macroaveraging: 
compute the performance for each class, and then 
average over classes

Microaveraging: 
collect decisions for all classes into one confusion matrix
compute precision and recall from that table. 
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Figure 4.6 Separate confusion matrices for the 3 classes from the previous figure, showing the pooled confu-
sion matrix and the microaveraged and macroaveraged precision.

and in general decide what the best model is. Once we come up with what we think
is the best model, we run it on the (hitherto unseen) test set to report its performance.

While the use of a devset avoids overfitting the test set, having a fixed train-
ing set, devset, and test set creates another problem: in order to save lots of data
for training, the test set (or devset) might not be large enough to be representative.
Wouldn’t it be better if we could somehow use all our data for training and still use
all our data for test? We can do this by cross-validation: we randomly choose across-validation
training and test set division of our data, train our classifier, and then compute the
error rate on the test set. Then we repeat with a different randomly selected training
set and test set. We do this sampling process 10 times and average these 10 runs to
get an average error rate. This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on, because we’d be
peeking at the test set, and such cheating would cause us to overestimate the perfor-
mance of our system. However, looking at the corpus to understand what’s going
on is important in designing NLP systems! What to do? For this reason, it is com-
mon to create a fixed training set and test set, then do 10-fold cross-validation inside
the training set, but compute error rate the normal way in the test set, as shown in
Fig. 4.7.
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Figure 4.7 10-fold cross-validation



Development Test Sets and Cross-validation

■ Metric: P/R/F1 or Accuracy
■ Unseen test set

avoid overfitting (“tuning to the test set”)
more conservative estimate of performance

■ Cross-validation over multiple splits
k-fold cross validation or multiple train/test splits
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K-fold cross validation

■ Break up data into 10 
folds

(Equal positive and 
negative inside each 
fold?)

■ For each fold
Choose the fold as a 
temporary test set
Train on 9 folds, 
compute performance 
on the test fold

■ Report average 
performance of the 10 
runs
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