Background: Generative and
Discriminative Classifiers

Logistic
Regression

Logistic Regression

Important analytic tool in natural and
social sciences

Baseline supervised machine learning
tool for classification

Is also the foundation of neural
networks

Generative and Discriminative Classifiers

Naive Bayes is a generative classifier

by contrast:

Logistic regression is a discriminative
classifier

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

imagenet iImagenet

Generative Classifier:

 Build a model of what's in a cat image
 Knows about whiskers, ears, eyes
* Assigns a probability to any image:
* how cat-y is this image?

Now given a hew image:
Run both models and see which one fits better

Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars!
Let's ignore everything else

Finding the correct class ¢ from a document d in
Generative vs Discriminative Classifiers

Naive Bayes

likelihood prior

—N—

¢ =argmax P(d|c) P(c)
ccC

Logistic Regression

~ posterior

¢ =argmax P(c|d)

ceC

Components of a probabilistic machine learning
classifier

Given m input/output pairs (x"y®):

1. A feature representation of the input. For each input
observation x') a vector of features [X1, Xy, ..., X,]. Feature j
for input x"is x;, more completely x, or sometimes f;(x).

2. A classification function that computes J, the estimated
class, via p(y|x), like the sigmoid or softmax functions.

An objective function for learning, like cross-entropy loss.

4. An algorithm for optimizing the objective function: stochastic
gradient descent.

The two phases of logistic regression

Training: we learn weights w and b using stochastic
gradient descent and cross-entropy loss.

Test: Given a test example x we compute p(y|x)
using learned weights w and b, and return

whichever label (y =1 or y = 0) is higher probability

Background: Generative and
Discriminative Classifiers

Logistic
Regression

Classification in Logistic Regression

Logistic
Regression

Classification Reminder

Positive/negative sentiment
Spam/not spam

Authorship attribution
(Hamilton or Madison?)

Alexander Hamilton

Text Classification: definition

Input:
> a document x
> a fixed set of classes C=1{c,, C,,..., C}}

Output: a predicted class y € C

Binary Classification in Logistic Regression

Given a series of input/output pairs:
o (x{) yli))
For each observation x!!

> We represent x!!) by a feature vector [x,, x,,..., X]
> We compute an output: a predicted class ! € {0,1}

Features in logistic regression

* For feature x;,, weight w, tells is how important is x.
° X ='"review contains ‘awesome’’: w,= +10
° X = review contains ‘abysmal’" i==10
° X, ="review contains ‘mediocre’": w, =-2

LO;

oistic Regression for one observation X

Input observation: vector x =[x, x,,..., X,/

Weights: one per feature: W = [w,, w,,..., w,|
> Sometimes we call the weights6=/6,, 0,,..., 0]

Ou

tput: a predicted class y € {0,1}

(multinomial logistic regression: y € {0, 1, 2, 3, 4})

How to do classification

For each feature x;, weight w; tells us importance of x
> (Plus we'll have a bias b)

We'll sum up all the weighted features and the bias

n
Z W;X; -+ b
=1

Z = w-x+b
If this sum is high, we say y=1; if low, then y=0

N
|

But we want a probabilistic classifier

We need to formalize “sum is high”.

We'd like a principled classifier that gives us a
probability, just like Naive Bayes did

We want a model that can tell us:
p(y=1|x; ©)
p(y=0|x; ©)

The problem: zisn't a probability, it's just a
number!

2 = w-x+b

Solution: use a function of z that goes from 0 to 1

1 1

— O p— p—
Y (2) l+e 2 14exp(—2z)

The very useful sigmoid or logistic function

|[dea of logistic regression

We'll compute w-x+b

And then we’ll pass it through the
sigmoid function:

o(W-Xx+b)
And we'll just treat it as a probability

Making probabilities with sigmoids

Ply=1) = o(w-x+b)
1
1l +exp(—(w-x+b))

~
VR
<
|
=
N—"
|

1 —o(w-x+b)

1
1

l14+exp(—(w-x+b))
exp(—(w-x+Db))
l+exp(—(w-x+b))

By the way:

G(—(w-x+b))

ae
Y
<
|
-
N—"
|

l—o(w-x+b)
1
l+exp(—(w-x+b)) Because
exp(—(w-x+b)) 1—0o(x) =0(—x)
l+exp(—(w-x+b))

1

Turning a probability into a classifier

[1if P(y=1Jx)>0.5
Y~ 0 otherwise

0.5 here is called the decision boundary

||
Q
B
<
=

The probabilistic classifier P(y =1)

1.0
P(y=1)
0.8t

Turning a probability into a classifier

. [1if Py=1]x)>05 1twxtb>0
Y~ 0 otherwise ifwx+b <0

Classification in Logistic Regression

Logistic
Regression

Logistic Regression: a text example
on sentiment classification

Logistic
Regression

Sentiment example: does y=1 or y=07?

It's hokey . There are virtually no surprises , and the writing is second-rate .

So why was it so enjoyable ? For one thing, the cast is
great . Another nice touch is the music . | was overcome with the urge to get off

the couch and start dancing . It sucked me in, and it'll do the same to you.

-

-
-
-

X2—

- .
-_—" .
-_ .
-—
-—

X3—1

-_— .
-—

® -
-
-—
-
-
-_— .
-
-

It's(aokey). T here are virtually(@oJsurprises , and the ertmg 1s Gecond-rato.
So Why was 1t so@loyablfb ? For one thing , the cast 1s
). Another(niceXouch is the music (Dzvas overcome with the urge to get oft
the co\u.eh and start,danemg [t sucked @m ,qnd it'll do the same to to_foU) .

\
N
N

I/

X1:3

\
~

xs=0 xg=4.19 T

-
-

Var Definition

Value in Fig. 5.2

x; count(positive lexicon) € doc) 3

xp count(negative lexicon) € doc) 2

N { 1 if “no” € doc {
3 0 otherwise

x4 count(1st and 2nd pronouns € doc) 3

. { 1 if “!” €doc 0
. 0 otherwise

x¢ log(word count of doc) In(66)

=4.19

Classitying sentiment for input x

Var Definition Val 5.2
X1 count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
“ <(1 if “no” € doc |
| 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
- <(1 if “” € doc 0
_ 0 otherwise
x¢ log(word count of doc) In(66) =4.19

Suppose w = [2.5,—5.0,—1.2,0.5, 2'.0, 0.7]
b=0.1

Classitying sentiment for input x

p(+x) = P(Y = 1]x)

p(—|x) =P(Y

0lx)

o(w-x+b)

5([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.19]
o(.833)

70

-

l—oc(w-x+b)
0.30

0.1)

We can build features for logistic regression for
any classification task: period disambiguation

End of sentence
This ends in a perio ~ \
The house at 465 Main S@'s ne\@

Not end

if “Case(w;) = Lower”
otherwise

\N /7

O = O = OO

if “w; € AcronymDict”

otherwise

if “w; = St. & Case(w;_1) = Cap”
otherwise

\N /7

Classification in (binary) logistic regression: summary

Given:
o a set of classes: (+ sentiment,- sentiment)
> avector x of features [x1, x2, .., Xn]
> x1= count("awesome")
> x2 = log(number of words in review)

> A vector wof weights [wl, w2, .., wn]
> w; for each feature f;

P(y=1) = o(w-x+D)
1
1_|_e—(w-x-|—b)

Logistic Regression: a text example
on sentiment classification

Logistic
Regression

Learning: Cross-Entropy Loss

Logistic
Regression

Wait, where did the W’s come from?

Supervised classification:
* We know the correct label y (either O or 1) for each x.
* But what the system produces is an estimate, y

We want to set w and b to minimize the distance between our
estimate $! and the true y'.

* We need a distance estimator: a loss function or a cost
function

* We need an optimization algorithm to update w and b to
minimize the loss.

Learning components

A loss function:
> cross-entropy loss

An optimization algorithm:
> stochastic gradient descent

The distance between y and y

We want to know how far is the classifier output:
y = o(w-x+b)

from the true output:
y |= either O or 1]}

We'll call this difference:
L(y ,y) = how much y differs from the true y

Intuition of negative log likelihood loss
= cross-entropy loss

A case of conditional maximum likelihood
estimation

We choose the parameters w,b that maximize
* the log probability

* of the true y labels in the training data

* given the observations x

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can

express the probability p(y|x) from our classifier (the thing
we want to maximize) as

plylx) = 37 (1-9)"
noting:
if y=1, this simplifies to y
if y=0, this simplifiesto 1-)

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize: p(y}x) = $*(1—9)
Now take the log of both sides (mathematically handy)
Maximize: logp(ylx) = log[§” (1—35)"]
= ylogy+(1—y)log(1—7)

Whatever values maximize log p(y|x) will also maximize
p(y|x)

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize: logp(ylx) = log[* (1—5)']
= ylogy+(1—y)log(l—7)

Now flip signh to turn this into a loss: something to minimize

Cross-entropy loss (because is formula for cross-entropy(y, ¥))
Minimize: Lce(y,y) =—logp(ylx) = —[ylogy+ (1 —y)log(l—3)]

Or, plugging in definition of y:
Lce(P,y) = —[ylogo(w-x+b)+(1—y)log(l—c(w-x+b))]

Let's see if this works for our sentiment example

We want loss to be:

* smaller if the model estimate is close to correct

* bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)
It's hokey . There are virtually no surprises, and the writing is second-rate .
So why was it so enjoyable ? For one thing, the cast is great . Another nice

touch is the music . | was overcome with the urge to get off the couch and
start dancing . It sucked me in, and it'll do the same to you .

Let's see if this works for our sentiment example

True value is y=1. How well is our model doing?

p(+[x) =P(Y =1Jx) = o(w-x+b)
= o([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.19] +0.1)
= 0(.833)
— 0.70 (5.6)

Pretty welll What's the loss?

Lee(9,y) = —[ylogo(w-x+b)+ (1 —y)log(l—o(w-x+b))
— —logo(w-x+b)]
— —log(.70)
- .36

Let's see if this works for our sentiment example

Suppose true value instead was y=0.

p(—x) = P(Y =0x) = 1—0(w-x+b)

= 0.30
What's the loss?
Lce(9,y) = —[ylogo(w-x+b)+(1 —y)log(l —o(w-x+b))]
_ —log(1—o(w-x+b))]
— —log (.30)

1.2

Let's see if this works for our sentiment example

The loss when model was right (if true y=1)
Lce(9,y) = —[ylogo(w-x+b)+ (1 —y)log(l —o(w-x+b))]
—[logo(w-x+b)]
—log(.70)
— .36
Is lower than the loss when model was wrong (if true y=0):

Lee(9y) = —[ylogo(w-x+b)+(1—y)log(l —o(w-x+b))]
= —log(1 —oc(w-x+b))]
— —log(.30)
— 1.2

Sure enough, loss was bigger when model was wrong!

Cross-Entropy Loss

Logistic
Regression

Stochastic Gradient Descent

Logistic
Regression

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized
by weights 6=(w,b)

* And weé'll represent y as f (x; 6) to make the
dependence on 6 more obvious

We want the weights that minimize the loss, averaged
over all examples:

6 = argmin%ZLCE(f(X(i);Q)aY(i))
0 i=1

Intuition of gradient descent

How do | get to the bottom of this river canyon?

Look around me 360°

Find the direction of
7g steepest slope down

(}/\ Go that way

Our goal: minimize the loss

For logistic regression, loss function is convex
* A convex function has just one minimum

* Q@Gradient descent starting from any point is
guaranteed to find the minimum

* (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Loss 4 Should we move
right or left from here?

Let's first visualize for a sin;

ole scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

A
Loss

slope of loss at Wl/

1s negative

So we'll move positive

Let's first visualize for a sin;

ole scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

A
Loss

one step
of gradient
descent

slope of loss at Wl//'

1s negative

So we'll move positive

Gradients

The gradient of a function of many variables is a

vector pointing in the direction of the greatest
increase in a function.

Gradient Descent: Find the gradient of the loss
function at the current point and move in the
opposite direction.

How much do we move in that direction ?

* The value of the gradient (slope in our example)
%L(f(x; w),y) weighted by a learning rate n

* Higher learning rate means move w faster

W =L (f(xiw))

Now let's consider N dimensions

We want to know where in the N-dimensional space
(of the N parameters that make up 6) we should
move.

The gradient is just such a vector; it expresses the
directional components of the sharpest slope along
each of the N dimensions.

Imagine 2 dimensions, w and b
Cost(w,b)

Visualizing the
gradient vector at
the red point

It has two
dimensions shown
in the x-y plane

\ -, X z7
CAaneTaS. »‘.‘e’p’&‘o‘ & TP, /
"\ \.‘ \\\\:\\\‘A‘ ‘g‘?. '4."1’ ,/’ I,;
B S NS, Pl N ST 7 et
N _\f“. - - V‘l T
RS el e
- "

-~ - -
- T . .

-

\

Real gradients

Are much longer; lots and lots of weights

For each dimension w; the gradient component j
tells us the slope with respect to that variable.

> “How much would a small change in w; influence the
total loss function L?”

> We express the slope as a partial derivative 0 of the loss
ow,;

The gradient is then defined as a vector of these
partials.

The gradient

We’'ll represent y as f (x; 0) to make the dependence on 6 more
obvious: - 5 i,

WL(f(X; 9),)’)

iL f(x;0),
VgL(f(x;Q)jy)) _ dwy (()y)

S L(f(x:0),)

The final equation for updating 0 based on the gradient is thus

6.1 = 6, —nVL(f(x;0),y)

What are these partial derivatives for logistic regression?

The loss function
Lce(¥,y) = —|ylogo(w-x+b)+(1—y)log(l—o(w-x+D))]

The elegant derivative of this function (see textbook 5.8 for derivation)

aLCE(yay)
aWj

= [ow-x+b)),

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function

f 1s a function parameterized by 0
X 18 the set of training inputs x(l), x(z), e x(m)
y 1s the set of training outputs (labels) y(l), y(2>, e y(m)
60
repeat til done
For each training tuple (x{?), y()) (in random order)
1. Optional (for reportlng) # How are we doing on this tuple?
Compute $() = f(x();0) # What is our estimated output §?
Compute the loss L(y(), y(i)) # How far off is ${)) from the true output y{9)?
2. g+ VoL(f(xD;0),y) # How should we move 6 to maximize loss?
3.0-0 —ng # Go the other way 1nstead

return 6

Hyperparameters

The learning rate n is a hyperparameter
> too high: the learner will take big steps and overshoot

> too low: the learner will take too long

Hyperparameters:
* Briefly, a special kind of parameter for an ML model

* |nstead of being learned by algorithm from
supervision (like regular parameters), they are
chosen by algorithm designer.

Stochastic Gradient Descent

Logistic
Regression

Stochastic Gradient Descent:
An example and more details

Logistic
Regression

Working through an example

One step of gradient descent
A mini-sentiment example, where the true y=1 (positive)

Two features:
X, =3 (count of positive lexicon words)

X, =2 (count of negative lexicon words)

Assume 3 parameters (2 weights and 1 bias) in @% are zero:
w,=w,=b =0
n=0.1

Example of gradient descent
w,=w,=b =0;
Update step for update 6 is: X, =3; X, =2
011 = 6, —MVL(f(x;0),y)

where OLEFY) _ 5w x+b) — y]x;
8Wj

Gradient vector has 3 dimensions:

B aLCE(yay) i
a 8W€
Lcg (Y,
Vb = ce(J,y)

ow
aLCE é\’y)
ob

Example of gradient descent
w,=w,=b =0;
Update step for update 6 is: X, =3; X, =2
011 = 6, —MVL(f(x;0),y)

where OLEFY) _ 5w x+b) — y]x;
8Wj

Gradient vector has 3 dimensions:

B aLCE(yay) i
a 8W€
L y, _
Vb = ce(J,y)

ow
aLCE é\’y)
ob

Example of gradient descent
w,=w,=b =0;
Update step for update 6 is: X, =3; X, =2
011 = 6, —MVL(f(x;0),y)

where OLEFY) _ 5w x+b) — y]x;
8Wj

Gradient vector has 3 dimensions:

~ JdLce(9,y) T _ _
Sigf 21 [(o(wx+b)—y)n
Vb = aLSEVy’y) = | (6(w-x+D)—y)x
aLCgIEZyA,y) i G(w-x+b) —y

Example of gradient descent
w,=w,=b =0;
Update step for update 6 is: X, =3; X, =2
011 = 6, —MVL(f(x;0),y)

where OLEFY) _ 5w x+b) — y]x;
8Wj

Gradient vector has 3 dimensions:

- JLcg(P,y) T _ _ _ _
Swol] [(elwrtn)—yn] [(o0 -1
Vi = | 20 | = | (o(w-x+b) =y)x | = | (0(0)~ 1)x,
3chl§yAJ) _G(w-x+b)—y | _G(O)—l

Example of gradient descent
w,=w,=b =0;
Update step for update 6 is: X, =3; X, =2
011 = 6, —MVL(f(x;0),y)

where OLEFY) _ 5w x+b) — y]x;
aWj

Gradient vector has 3 dimensions:

B aLCE (yay>]

&W& - (o(w-x+b)—y)x1 | (0(0) —1)x; | - —0.5x1 1.5
Vs = aLSEVW) = | (cwx+b)—y)xy | = | (6(0)=1)xp | = | —05x | = | —1.0
Lcs (5.) o(w-x+b)—y c(0)—1 —0.5 —0.5

Lo 4 -5 - -5 -

Example of gradient descent

- JLcg (D) T

8w<1A (oc(w-x+b)—y)x1 | [(6(0)—1)x - —0.5x;] [—1.57
Vw,b — aLC&Evyjy) — (G(W -x—|—b) —y)xz — ((0) —) — | =05 | =1| —1.0
9chl§ﬁ,y) o(w-x+b)—y ' oc0)—-1 | |-05 | | —-05]

Now that we have a gradient, we compute the new parameter vector
6! by moving 6° in the opposite direction from the gradient:

6,1 = 6,—nVL(f(x;0),y) n=0.1;

ol =

Example of gradient descent

- JLcg (D) T

8w<1A C(oc(w-x+b)—y)x1 | [(6(0)—1)x - —0.5x;] [—1.57
Vw,b — aLC&Evyjy) — (G(W -x—|—b) —y)xz — ((0) —) — | =05 | =1| —1.0
9chl§ﬁ,y) o(w-x+b)—y ' oc0)—-1 | |-05 | | —-05]

Now that we have a gradient, we compute the new parameter vector
6! by moving 6° in the opposite direction from the gradient:

6,1 = 6,—nVL(f(x;0),y) n=0.1;

Wi —1.5
91: wy | — 1 —1.0
b 0.5

Example of gradient descent

- JLcg (D) T

8w<1A C(oc(w-x+b)—y)x1 | [(6(0)—1)x - —0.5x;] [—1.57
Vw,b — BLSEVy’y) — (G(W -x—|—b) —y)x2 — ((0) —) — | =05 | =1| —1.0
9chl§ﬁ,y) o(w-x+b)—y ' oc0)—-1 | |-05 | | —-05]

Now that we have a gradient, we compute the new parameter vector
6! by moving 6° in the opposite direction from the gradient:

6,1 = 6,—nVL(f(x;0),y) n=0.1;
W 151 [.15°
o' =|wy | -n| 10| =11
b | | -05| |05

Example of gradient descent

- 0 - _ _ _ _ _ _

LSE%{ 2 (6w-x+b) —yx] [(6(0)—1)x _0.5x, 15

Vw,b — aL(aﬂiVy’y) = (G(W -x—|—b) —y)x2 = ((0)) = | —05x | = | —1.0
achlfy,y> o(w-x+b) - 5(0) - 05 | | -05

Now that we have a gradient, we compute the new parameter vector
6! by moving 6° in the opposite direction from the gradient:

611 = 6, —nVL(f(x;0),y) n=0.1;
Wy - —15] [.15
91 = | w2 [—1N —1.0| =1 .1
_b _ _—().5_ _.05_
Note that enough negative examples would eventually make w, negative

Mini-batch training

Stochastic gradient descent chooses a single
random example at a time.

That can result in choppy movements

More common to compute gradient over batches of
training instances.

Batch training: entire dataset
Mini-batch training: m examples (512, or 1024)

Stochastic Gradient Descent:
An example and more details

Logistic
Regression

Regularization

Logistic
Regression

Overfitting

A model that perfectly match the training data has a
problem.

It will also overfit to the data, modeling noise

> A random word that perfectly predicts y (it happens to
only occur in one class) will get a very high weight.

> Failing to generalize to a test set without this word.

A good model should be able to generalize

Overfitting

Useful or harmless features

X1 = "this"
| | T | . X2 = "movie
This movie drew me in, and it'll X3 = "hated"

do the same to you. X4 = "drew me in"

- 4gram features that just
"memorize” training set and
might cause problems

X5 = "the same to you"
X7 = "tell you how much”

| can't tell you how much |
hated this movie. It sucked.

Overfitting

4-gram model on tiny data will just memorize the data
> 100% accuracy on the training set

But it will be surprised by the novel 4-grams in the test data
o Low accuracy on test set

Models that are too powerful can overfit the data

> Fitting the details of the training data so exactly that the
model doesn't generalize well to the test set

> How to avoid overfitting?

> Regularization in logistic regression
> Dropout in neural networks

Regularization

A solution for overfitting
Add a regularization term R(0) to the loss function

(for now written as maximizing logprob rather than minimizing loss)

H = argmaleogP(y(i)\x(i))—OCR(G)
O iz

ldea: choose an R(0) that penalizes large weights

o fitting the data well with lots of big weights not as good
as fitting the data a little less well, with small weights

L2 Re;

oularization (= ridge regression)

The sum of the squares of the weights

The name is because this is the (square of the)
L2 norm ||0||,, = Euclidean distance of 0 to the origin.

R(O) = [|6]3=) 6;
=1

L2 regularized objective function:

0 = argmax ZlogP(y(i)\x(i)) —0629]-2
O Li=i i

j=1

L1 Re;

oularization (= lasso re;

oression)

The sum of the (absolute value of the) weights

Named after the L1 norm ||}7]|;, = sum of the absolute
values of the weights, = Manhanttan distance

R(6) = [16][1=)_16]
=1

L1 regularized objective function:

0

0

= argmax ZlogP(y(i)|x(i>)
| 1=1

—oy 6]
j=1

Regularization

Logistic
Regression

Multinomial Logistic
Regression

Logistic
Regression

Multinomial Logistic Regression

Often we need more than 2 classes
> Positive/negative/neutral
> Parts of speech (noun, verb, adjective, adverb, preposition, etc.)
o Classify emergency SMSs into different actionable classes

If >2 classes we use multinomial logistic regression
= Softmax regression
= Multinomial logit

= (defunct names : Maximum entropy modeling or MaxEnt

So "logistic regression” will just mean binary (2 output classes)

Multinomial Logistic Regression

The probability of everything must still sum to 1

P(positive|doc) + P(negative|doc) + P(neutral|doc) = 1

Need a generalization of the sigmoid called the softmax
o Takes a vector z = [z1, z2, ..., zk] of k arbitrary values
o Qutputs a probability distribution
> each value in the range [0,1]
o all the values summing to 1

The softmax function

Turns a vector z = |z, 2, ... , Z;] Of k arbitrary values into probabilities

exp (z;)
> exp(z))

The denominator Zle e“ 1s used to normalize all the values into probabilities.

1 <i<k

softmax(z;) =

softmax(z) = exp (21) , exp (22) o fope(ng)(z)
i=1 [

S rexp(z) b exp(z)

The softmax function

o Turns avector z =|z,,2,,...,z;] Of k arbitrary values into probabilities

z=10.6,1.1,—1.5,1.2,3.2, —1.1]

oftmax(s) = | P Pl Z’fxpeiz;)(z)
i=1 !

S rexp(z) Sohexp(z)

0.055,0.090,0.0067,0.10,0.74,0.010]

Softmax in multinomial logistic regression

exp(we-x+0b
ply=clx) = — e 2t be)
Zexp(wj-x+bj)
j=1
Input is still the dot product between weight vector w

and input vector x
But now we’ll need separate weight vectors for each

of the K classes.

Features in binary versus multinomial logistic regression

Binary: positive weight 2 y=1 neg weight 2 y=0

1 1if ! € doc
— w:=3.0
S { 0 otherwise >

Multinominal: separate weights for each class:

Feature Definition W5+ W5 _ W5
1 1t “!” edoc

f5(x) { 3.5 3.1 —3.3

0 otherwise

Multinomial Logistic
Regression

Logistic
Regression

