Introduction to Statistics

Road Map

- What is Statistics?
- Sampling models
- Statistical data
- Coding variable
- Organizing data

What is Statistics?

- Science of investigating population's laws
- (a) Population: The set of target objects of the study
 - Socio-demographic study: All citizens of a given country
 - Forestry survey: All trees in a study region
 - Quality control: All product issues of a factory

(b) Sample

 A reasonable small amount of individuals picked out from a given population for a specific study

Sampling

- Sampling: process and method to select the sample
- How to do the sampling:
 - Representative for population of the study
 - Corresponding to the study target

(a) One sample model:

- usually concerns with an intervention on population: If the intervention should make some change in the population?
- Choose individuals from the population randomly to perform a sample

- Perform one sample model to investigate:
 - Example 1: If in Ha Dong 90% motorcyclists use helmets
 - Example 2: If in Ha Noi proportion of girl students less than 50%
 - Example 3: If in Viet Nam bred breeding is popular among more than 70% women

(b) Two independent sample model:

- Model of two groups of objects with different:
 - Intervention levels
 - Individual proper

- In the model of two independent samples:
 - Numbers of observations in two groups (sample sizes) may be different
 - Observations of each group are independent from those of the second group
 - Sampling: Observations must be randomly selected from each of two groups

- Perform two independent sample model to investigate:
 - Example 1: If women are better in foreign languages than men
 - Example 2: If there is any difference between Ha Noi and Ho Chi Minh City in immigration from rural areas
 - Example 3: If quality of coffee produced in Lam Dong is different than that in Dak Lak
 - Example 4: If number of traffic accidents per month in Ba Dinh district decreased after 31/12/2023

• (c) Model of two dependent (paired) samples:

- Two dependent sample model is used in a study when:
 - Each object in the first sample is chosen together with a similar (paired) object in the second sample, or
 - Any object in the second sample is the same one in the first sample, but the measures in the two samples are taken under different conditions

- In the model of two paired samples:
 - Observation amounts (sample sizes) of two samples are equal
 - Information taken from one observation is related with that of correspondingly paired observation
 - In pairing to perform the samples, all factors which may influence on study issues must be taken into account

- Perform two paired sample model:
 - Example 1: To investigate the influence of cigarette on hypertension disease: perform two samples of smoking and non smoking people, each person from the non-smoking group is paired with one smoking person similar about age, sex, weight, height, occupation, etc.
 - Example 2: Comparing 2022 and 2023 to investigate if there is a changing in persons' opinion about Covid Vaccination

(d) Model of multi-independent samples:

- In the model of multi-independent samples:
 - Numbers of observations in groups (sample sizes) may be different
 - Observations of each group are independent from those of the other groups
 - Sampling: Observations must be randomly selected from each of groups

- Perform multi-independent sample model to investigate:
 - Example 1: Compare examination results of several high schools in Ha Noi
 - Example 2: Compare salary in different economic sectors
 - Example 3: Compare water supplying of ethnic groups

Statistical data

- Data: Information, usually numerical or categorical
- Elements, Variables, and Observations in statistical data:
 - Elements (study units, objects): are the entities on which data are collected.
 - A variable is a characteristic of interest for the elements.
 - The set of variables' measurements obtained for a particular element is called an observation.
 - □ A data set with *n* elements contains *n* observations.

- (a) Quantitative variables (measures)
 - Continuous variables (e.g. weight, temperature, density of a chemical substance in water)
 - Discrete variables (e.g. income, salary, price)
 - Integer variable (e.g. age, amount of children in household)
 - > Quantitative variable data indicate how many or how much
 - → Quantitative variable data are always numeric

- (b) Qualitative variables (nominal or categorical variables)
 - Characteristics of the study object, usually with nonnumeric values
 - Examples: Gender (male/female); Residence place, Reason of borrow (for Health care, for Education, etc.); Occupation (Farmer, Worker, Vender); Transport (by foot, by boat, bicycle, motorbike, car, etc.)

- Ordinal qualitative variables:
 - Values of variables can be ordered in certain way, presenting their importance levels
 - Example: Housing, Water source, Transport mean, etc.
- Unordered qualitative variables (nominal variables):
 - Values of variables can not be ranged in order
 - □ Example: Ethnic, Occupation, Reason of migration, etc.

Examples of variable types:

Given variables: Name, Age, Gender, Height, Weight, Housing
 VSET(Name) = {Ba, Hoa, Lan, ...}

VSET(Age) = {1, 2, 3, ...}

VSET(Gender) = {Male, Female}

VSET(Height) = {0.6 m, 2.30 m, ...}

VSET(Weight) = {2 kg, 150 kg, ...}

VSET(Housing) = {thatched house, brick house, apartment, villa}

Coding variable

- Turning collected information into numerical form suitable for computing process
- (i) Coding quantitative variables
 - Values of quantitative variables are measures
 - → The measures are taken directly as codes of variables

Coding variable

(ii) Coding qualitative variables

For ordered qualitative variables

- Take integer numbers as codes for ordered levels of a given variable
- For unordered qualitative variables
 - 1st way: Coding in the same way as for ordered variables, each value of variable → one integer number
 - 2nd way: From a given variable perform new auxiliary binary variables, each of those takes only two values 0-1

Coding example:

• (a) Coding ordered qualitative variables:

"Transport means"

~	By foot	\rightarrow	0		
~	By bicycle		\rightarrow	1	
~	By motorbike		-	>	2

"Housing"

~ Homeless $\rightarrow 0$ ~ Thatched house $\rightarrow 1$

3

 \rightarrow

5

6

→

 \rightarrow

- ~ Wooden house
- ~ Appartment
- ~ Villa

Coding example:

(b) Coding unordered qualitative variables

• "Debt reason": Production, Shopping, Health care, Education, Wedding

	 Production 	\rightarrow	1
1 st way	~ Shoping	\rightarrow	2
T st way.	~ Health care	\rightarrow	3
	~ Education	\rightarrow	4
	~ Wedding	\rightarrow	5

2nd way: Form up 5 auxiliary binary variables

Main variable	Variable 1	Variable 2	Variable 3	Variable 4	Variable 5
values	Production	Shopping	Health care	Education	Wedding
Production	1	0	0	0	0
Shopping	0	1	0	0	0
Health care	0	0	1	0	0
Education	0	0	0	1	0
Wedding	0	0	0	0	1

Organizing data

Data matrix:

- □ Columns \rightarrow variables
- □ Rows \rightarrow observations
- Example: Demographic survey

	Name	Age	Sex	Income	Height	Weight	Whatching TV	Housing
Personl Person 2	Vân Bường	27 46	Female Male	650000 980000	1m55 1m68	55Kg 67Kg	Every day Rarely	Hired Brick H.
Person 40	Việt	31	Male	775000	1m73	58Kg	Every day	Wooden
Person 41	Canh	77	Female	325000	1m49	46Kg	Never	Thatched

