
Introduction to Neural Networks

Phạm Quang Nhật Minh
Aimesoft JSC

minhpham0902@gmail.com

January 27, 2024

Lecture outline
2

n Neural units
n The XOR problem
n Feed-Forward Neural Networks
n Training Neural Nets

Lecture outline
3

n Neural units
n The XOR problem
n Feed-Forward Neural Networks
n Training Neural Nets

Neural Network unit
4

n The building block of a neural network
¨ Weight vector 𝑤 = 𝑤!…𝑤"
¨ Bias term 𝑏
¨ Activation function 𝑓

Weights

Input layer

Weighted sum

Non-linear transform

Output value

Neural unit
5

n The building block of a neural network
¨ Weight vector 𝑤 = 𝑤!…𝑤"
¨ Bias term 𝑏
¨ Activation function 𝑓 (non-linear)

n Output of a neural unit
𝑦 = 𝑎 = 𝑓(𝑧)

Here:
¨ 𝑧 is the weighted sum

𝑧 ='
#

𝑤#𝑥# + 𝑏

𝑧 = 𝑤 * 𝑥 + 𝑏

Non-Linear Activation functions
6

n There are many non-linear activation functions
¨ Sigmoid

𝑦 = 𝜎 𝑧 =
1

1 + 𝑒$%

¨ Tanh

𝑦 =
𝑒% − 𝑒$%

𝑒% + 𝑒$%
¨ Rectified Linear (ReLU)

𝑦 = max(𝑥, 0)
¨ PReLU
¨ …

Activation functions
7

n Tanh and ReLU functions

An example

Suppose a unit has:
n w = [0.2,0.3,0.9]

n b = 0.5

What happens with input x:
n x = [0.5,0.6,0.1]

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

An example

Suppose a unit has:
n w = [0.2,0.3,0.9]

n b = 0.5

What happens with the following input x?
n x = [0.5,0.6,0.1]

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

An example

Suppose a unit has:
n w = [0.2,0.3,0.9]

n b = 0.5

What happens with input x:
n x = [0.5,0.6,0.1]

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

An example

Suppose a unit has:
n w = [0.2,0.3,0.9]
n b = 0.5

What happens with input x:
n x = [0.5,0.6,0.1]

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

In Python:
import numpy as np
y = 1/(1+np.exp(-
(np.dot(w,x) + b)))

Lecture outline
12

n Neural units
n The XOR problem
n Feed-Forward Neural Networks
n Training Neural Nets

Boolean functions
13

n AND, OR, XOR functions

Boolean functions using Perceptron
14

n Using Perceptron to compute above functions

𝑦 = #0, if 𝑤) 𝑥 + 𝑏 ≤ 0
1, if 𝑤) 𝑥 + 𝑏 > 0

n We can use Perceptron (a) for AND and (b) for OR

The XOR problem
15

n It’s not possible to build a perceptron to compute
logical XOR!

n The solution: neural networks!

The solution: neural networks
16

n XOR solution with two-layer neural network and
ReLU activation functions

The solution: neural networks
17

x1 x2 h1 h2 y1

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 2 1 0

Lecture outline
18

n Neural units
n The XOR problem
n Feed-Forward Neural Networks
n Training Neural Nets

Feedforward Neural Networks

n Can also be called multi-layer perceptrons (or MLPs)
for historical reasons

8 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

x1 x2

y1

xn0…

…

+1

b

…
U

W

y2 yn2

h1 h2 h3 hn1

Figure 7.8 A simple 2-layer feedforward network, with one hidden layer, one output layer,
and one input layer (the input layer is usually not counted when enumerating layers).

Recall that a single hidden unit has parameters w (the weight vector) and b (the
bias scalar). We represent the parameters for the entire hidden layer by combining
the weight vector wi and bias bi for each unit i into a single weight matrix W and
a single bias vector b for the whole layer (see Fig. 7.8). Each element Wji of the
weight matrix W represents the weight of the connection from the ith input unit xi to
the jth hidden unit h j.

The advantage of using a single matrix W for the weights of the entire layer is
that now the hidden layer computation for a feedforward network can be done very
efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function g (such as the sigmoid, tanh, or ReLU activation
function defined above).

The output of the hidden layer, the vector h, is thus the following, using the
sigmoid function s :

h = s(Wx+b) (7.8)

Notice that we’re applying the s function here to a vector, while in Eq. 7.3 it was
applied to a scalar. We’re thus allowing s(·), and indeed any activation function
g(·), to apply to a vector element-wise, so g[z1,z2,z3] = [g(z1),g(z2),g(z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll refer to the input layer as layer 0 of the network, and have n0
represent the number of inputs, so x is a vector of real numbers of dimension n0,
or more formally x 2 Rn0 , a column vector of dimensionality [n0,1]. Let’s call the
hidden layer layer 1 and the output layer layer 2. The hidden layer has dimensional-
ity n1, so h 2 Rn1 and also b 2 Rn1 (since each hidden unit can take a different bias
value). And the weight matrix W has dimensionality W 2 Rn1⇥n0 , i.e. [n1,n0].

Take a moment to convince yourself that the matrix multiplication in Eq. 7.8 will
compute the value of each h j as s

�Pn0
i=1 Wjixi +b j

�
.

As we saw in Section 7.2, the resulting value h (for hidden but also for hypoth-
esis) forms a representation of the input. The role of the output layer is to take
this new representation h and compute a final output. This output could be a real-
valued number, but in many cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a single
output node, and its value y is the probability of positive versus negative sentiment.

Feed-forward neural networks
20

n Simple feed-forward neural networks inclue:
¨ Input units
¨ Hidden units
¨ Output units

Feed-forward neural networks
21

n A single hidden unit has:
¨ parameters 𝑤 (the weight vector) and
¨ Bias term 𝑏 (scalar)

n Combine weight vectors and bias terms of units into
matrix 𝑊 and vector 𝐛

Feed-forward neural networks
22

n A single hidden unit has:
¨ parameters 𝑤 (the weight vector) and
¨ Bias term 𝑏 (scalar)

n Combine weight vectors and bias terms of units into
matrix 𝑊 and vector 𝐛

n Output of the hidden layer, the vector ℎ with
sigmoid as the activation function

ℎ = 𝜎 𝑊𝑥 + 𝐛
¨ The activation function is applied to vector element-wise

n 𝑔(𝑧!, 𝑧&, 𝑧') = [𝑔 𝑧! , 𝑔 𝑧& , 𝑔 𝑧']

Dimensions of vectors and matrices
23

n Input layer (layer 0): 𝑥 ∈ ℝ!!

n Hidden layer (layer 1): ℎ ∈ ℝ!", 𝑏 ∈ ℝ!"
n Weight matrix: 𝑊 ∈ ℝ!"×!!

Output layer
24

n If we do binary classification and use sigmoid
function at the output layer, we use a single output
unit

Output layer
25

n For multi-class classification, we use K units in
output layer and softmax function
¨ K is the number of classes

Binary Logistic Regression as a 1-layer Network
26

w

xnx1

𝑦 = 𝜎(𝑤 & 𝑥 + 𝑏)

+1

w1 wn b

(y is a scalar)
σOutput layer

(σ node)

Input layer
vector x

(we don't count the input layer in counting layers!)

(vector)
(scalar)

Multinomial Logistic Regression as a 1-layer Network
27

W

xnx1

Fully connected single layer network

W is a
matrix

𝑦 = softmax(𝑊𝑥 + 𝑏)

+1

y is a vector

y1 yn

b is a vector
b

s s sOutput layer
(softmax nodes)

Input layer
scalars

Reminder: softmax: a generalization of sigmoid

n For a vector z of dimensionality k, the softmax is:

n Example:

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.27)

If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

q̂ = argmax
q

MY

i=1

P(y(i)|x(i))⇥
nY

j=1

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.28)

which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�a
nX

j=1

q 2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)

1 i k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
exp(z1)Pk
i=1 exp(zi)

,
exp(z2)Pk
i=1 exp(zi)

, ...,
exp(zk)Pk
i=1 exp(zi)

#
(5.31)

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.27)

If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

q̂ = argmax
q

MY

i=1

P(y(i)|x(i))⇥
nY

j=1

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.28)

which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�a
nX

j=1

q 2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)

1 i k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
exp(z1)Pk
i=1 exp(zi)

,
exp(z2)Pk
i=1 exp(zi)

, ...,
exp(zk)Pk
i=1 exp(zi)

#
(5.31)

16 CHAPTER 5 • LOGISTIC REGRESSION

The denominator
Pk

i=1 exp(zi) is used to normalize all the values into probabil-
ities. Thus for example given a vector:

z = [0.6,1.1,�1.5,1.2,3.2,�1.1]

the resulting (rounded) softmax(z) is

[0.055,0.090,0.006,0.099,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
exp(wc · x+bc)

kX

j=1

exp(w j · x+b j)

(5.32)

Like the sigmoid, the softmax has the property of squashing values toward 0 or 1.
Thus if one of the inputs is larger than the others, it will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
Features in multinomial logistic regression function similarly to binary logistic re-
gression, with one difference that we’ll need separate weight vectors (and biases) for
each of the K classes. Recall our binary exclamation point feature x5 from page 4:

x5 =

⇢
1 if “!” 2 doc
0 otherwise

In binary classification a positive weight w5 on a feature influences the classifier
toward y = 1 (positive sentiment) and a negative weight influences it toward y = 0
(negative sentiment) with the absolute value indicating how important the feature
is. For multinominal logistic regression, by contrast, with separate weights for each
class, a feature can be evidence for or against each individual class.

In 3-way multiclass sentiment classification, for example, we must assign each
document one of the 3 classes +, �, or 0 (neutral). Now a feature related to excla-
mation marks might have a negative weight for 0 documents, and a positive weight
for + or � documents:

Feature Definition w5,+ w5,� w5,0

f5(x)
⇢

1 if “!” 2 doc
0 otherwise 3.5 3.1 �5.3

5.6.2 Learning in Multinomial Logistic Regression
The loss function for multinomial logistic regression generalizes the loss function
for binary logistic regression from 2 to K classes. Recall that that the cross-entropy
loss for binary logistic regression (repeated from Eq. 5.11) is:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.33)

16 CHAPTER 5 • LOGISTIC REGRESSION

The denominator
Pk

i=1 exp(zi) is used to normalize all the values into probabil-
ities. Thus for example given a vector:

z = [0.6,1.1,�1.5,1.2,3.2,�1.1]

the resulting (rounded) softmax(z) is

[0.055,0.090,0.006,0.099,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
exp(wc · x+bc)

kX

j=1

exp(w j · x+b j)

(5.32)

Like the sigmoid, the softmax has the property of squashing values toward 0 or 1.
Thus if one of the inputs is larger than the others, it will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
Features in multinomial logistic regression function similarly to binary logistic re-
gression, with one difference that we’ll need separate weight vectors (and biases) for
each of the K classes. Recall our binary exclamation point feature x5 from page 4:

x5 =

⇢
1 if “!” 2 doc
0 otherwise

In binary classification a positive weight w5 on a feature influences the classifier
toward y = 1 (positive sentiment) and a negative weight influences it toward y = 0
(negative sentiment) with the absolute value indicating how important the feature
is. For multinominal logistic regression, by contrast, with separate weights for each
class, a feature can be evidence for or against each individual class.

In 3-way multiclass sentiment classification, for example, we must assign each
document one of the 3 classes +, �, or 0 (neutral). Now a feature related to excla-
mation marks might have a negative weight for 0 documents, and a positive weight
for + or � documents:

Feature Definition w5,+ w5,� w5,0

f5(x)
⇢

1 if “!” 2 doc
0 otherwise 3.5 3.1 �5.3

5.6.2 Learning in Multinomial Logistic Regression
The loss function for multinomial logistic regression generalizes the loss function
for binary logistic regression from 2 to K classes. Recall that that the cross-entropy
loss for binary logistic regression (repeated from Eq. 5.11) is:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.33)

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.27)

If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

q̂ = argmax
q

MY

i=1

P(y(i)|x(i))⇥
nY

j=1

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.28)

which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�a
nX

j=1

q 2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)

1 i k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
exp(z1)Pk
i=1 exp(zi)

,
exp(z2)Pk
i=1 exp(zi)

, ...,
exp(zk)Pk
i=1 exp(zi)

#
(5.31)

Two-Layer Network with scalar output

U

W

xnx1 +1

y is a scalar

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be ReLU
Or tanh

z = 𝑈ℎ
𝑦 = 𝜎(𝑧)

Two-Layer Network with scalar output

U

W

xnx1 +1

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

i

jWji
vector

y is a scalar
z = 𝑈ℎ
𝑦 = 𝜎(𝑧)

Two-Layer Network with scalar output

U

W

xnx1 +1

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be ReLU
Or tanh

y is a scalar
z = 𝑈ℎ
𝑦 = 𝜎(𝑧)

Two-Layer Network with softmax output

U

W

xnx1 +1

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be ReLU
Or tanh

y is a vector
z = 𝑈ℎ
𝑦 = softmax(𝑧)

Multi-layer Notation

W[1
]

xnx1 +1

b[1]

i

j

W[2
] b[2]

𝑧["] = 𝑊["]𝑎[$] + 𝑏["]

𝑎[$]

𝑎["] = 𝑔 " (𝑧 ")

𝑧[%] = 𝑊[%]𝑎["] + 𝑏[%]
𝑎[%] = 𝑔 % (𝑧 %)

𝑦 = 𝑎[%]
sigmoid or softmax

ReLU

Multi Layer Notation
34

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Replacing the bias unit

n Let's switch to a notation without the bias unit
n Just a notational change
1. Add a dummy node a0=1 to each layer
2. Its weight w0 will be the bias
3. So input layer a[0]

0=1,
¨ And a[1]

0=1 , a[2]
0=1,…

Replacing the bias unit

n Instead of: We'll do
this:

10 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(first) hidden layer, and b[1] will mean the bias vector for the (first) hidden layer. n j
will mean the number of units at layer j. We’ll use g(·) to stand for the activation
function, which will tend to be ReLU or tanh for intermediate layers and softmax
for output layers. We’ll use a[i] to mean the output from layer i, and z[i] to mean the
combination of weights and biases W [i]a[i�1] +b[i]. The 0th layer is for inputs, so the
inputs x we’ll refer to more generally as a[0].

Thus we can re-represent our 2-layer net from Eq. 7.10 as follows:

z[1] = W [1]a[0] +b[1]

a[1] = g[1](z[1])

z[2] = W [2]a[1] +b[2]

a[2] = g[2](z[2])

ŷ = a[2] (7.11)

Note that with this notation, the equations for the computation done at each layer are
the same. The algorithm for computing the forward step in an n-layer feedforward
network, given the input vector a[0] is thus simply:

for i in 1..n
z[i] = W [i] a[i�1] + b[i]

a[i] = g[i](z[i])
ŷ = a[n]

The activation functions g(·) are generally different at the final layer. Thus g[2]
might be softmax for multinomial classification or sigmoid for binary classification,
while ReLU or tanh might be the activation function g(·) at the internal layers.

Replacing the bias unit In describing networks, we will often use a slightly sim-
plified notation that represents exactly the same function without referring to an ex-
plicit bias node b. Instead, we add a dummy node a0 to each layer whose value will
always be 1. Thus layer 0, the input layer, will have a dummy node a[0]0 = 1, layer 1
will have a[1]0 = 1, and so on. This dummy node still has an associated weight, and
that weight represents the bias value b. For example instead of an equation like

h = s(Wx+b) (7.12)

we’ll use:

h = s(Wx) (7.13)

But now instead of our vector x having n values: x = x1, . . . ,xn, it will have n+
1 values, with a new 0th dummy value x0 = 1: x = x0, . . . ,xn0 . And instead of
computing each h j as follows:

h j = s

 n0X

i=1

Wjixi +b j

!
, (7.14)

we’ll instead use:

s

 n0X

i=0

Wjixi

!
, (7.15)

10 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(first) hidden layer, and b[1] will mean the bias vector for the (first) hidden layer. n j
will mean the number of units at layer j. We’ll use g(·) to stand for the activation
function, which will tend to be ReLU or tanh for intermediate layers and softmax
for output layers. We’ll use a[i] to mean the output from layer i, and z[i] to mean the
combination of weights and biases W [i]a[i�1] +b[i]. The 0th layer is for inputs, so the
inputs x we’ll refer to more generally as a[0].

Thus we can re-represent our 2-layer net from Eq. 7.10 as follows:

z[1] = W [1]a[0] +b[1]

a[1] = g[1](z[1])

z[2] = W [2]a[1] +b[2]

a[2] = g[2](z[2])

ŷ = a[2] (7.11)

Note that with this notation, the equations for the computation done at each layer are
the same. The algorithm for computing the forward step in an n-layer feedforward
network, given the input vector a[0] is thus simply:

for i in 1..n
z[i] = W [i] a[i�1] + b[i]

a[i] = g[i](z[i])
ŷ = a[n]

The activation functions g(·) are generally different at the final layer. Thus g[2]
might be softmax for multinomial classification or sigmoid for binary classification,
while ReLU or tanh might be the activation function g(·) at the internal layers.

Replacing the bias unit In describing networks, we will often use a slightly sim-
plified notation that represents exactly the same function without referring to an ex-
plicit bias node b. Instead, we add a dummy node a0 to each layer whose value will
always be 1. Thus layer 0, the input layer, will have a dummy node a[0]0 = 1, layer 1
will have a[1]0 = 1, and so on. This dummy node still has an associated weight, and
that weight represents the bias value b. For example instead of an equation like

h = s(Wx+b) (7.12)

we’ll use:

h = s(Wx) (7.13)

But now instead of our vector x having n values: x = x1, . . . ,xn, it will have n+
1 values, with a new 0th dummy value x0 = 1: x = x0, . . . ,xn0 . And instead of
computing each h j as follows:

h j = s

 n0X

i=1

Wjixi +b j

!
, (7.14)

we’ll instead use:

s

 n0X

i=0

Wjixi

!
, (7.15)

10 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(first) hidden layer, and b[1] will mean the bias vector for the (first) hidden layer. n j
will mean the number of units at layer j. We’ll use g(·) to stand for the activation
function, which will tend to be ReLU or tanh for intermediate layers and softmax
for output layers. We’ll use a[i] to mean the output from layer i, and z[i] to mean the
combination of weights and biases W [i]a[i�1] +b[i]. The 0th layer is for inputs, so the
inputs x we’ll refer to more generally as a[0].

Thus we can re-represent our 2-layer net from Eq. 7.10 as follows:

z[1] = W [1]a[0] +b[1]

a[1] = g[1](z[1])

z[2] = W [2]a[1] +b[2]

a[2] = g[2](z[2])

ŷ = a[2] (7.11)

Note that with this notation, the equations for the computation done at each layer are
the same. The algorithm for computing the forward step in an n-layer feedforward
network, given the input vector a[0] is thus simply:

for i in 1..n
z[i] = W [i] a[i�1] + b[i]

a[i] = g[i](z[i])
ŷ = a[n]

The activation functions g(·) are generally different at the final layer. Thus g[2]
might be softmax for multinomial classification or sigmoid for binary classification,
while ReLU or tanh might be the activation function g(·) at the internal layers.

Replacing the bias unit In describing networks, we will often use a slightly sim-
plified notation that represents exactly the same function without referring to an ex-
plicit bias node b. Instead, we add a dummy node a0 to each layer whose value will
always be 1. Thus layer 0, the input layer, will have a dummy node a[0]0 = 1, layer 1
will have a[1]0 = 1, and so on. This dummy node still has an associated weight, and
that weight represents the bias value b. For example instead of an equation like

h = s(Wx+b) (7.12)

we’ll use:

h = s(Wx) (7.13)

But now instead of our vector x having n values: x = x1, . . . ,xn, it will have n+
1 values, with a new 0th dummy value x0 = 1: x = x0, . . . ,xn0 . And instead of
computing each h j as follows:

h j = s

 n0X

i=1

Wjixi +b j

!
, (7.14)

we’ll instead use:

s

 n0X

i=0

Wjixi

!
, (7.15)

10 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(first) hidden layer, and b[1] will mean the bias vector for the (first) hidden layer. n j
will mean the number of units at layer j. We’ll use g(·) to stand for the activation
function, which will tend to be ReLU or tanh for intermediate layers and softmax
for output layers. We’ll use a[i] to mean the output from layer i, and z[i] to mean the
combination of weights and biases W [i]a[i�1] +b[i]. The 0th layer is for inputs, so the
inputs x we’ll refer to more generally as a[0].

Thus we can re-represent our 2-layer net from Eq. 7.10 as follows:

z[1] = W [1]a[0] +b[1]

a[1] = g[1](z[1])

z[2] = W [2]a[1] +b[2]

a[2] = g[2](z[2])

ŷ = a[2] (7.11)

Note that with this notation, the equations for the computation done at each layer are
the same. The algorithm for computing the forward step in an n-layer feedforward
network, given the input vector a[0] is thus simply:

for i in 1..n
z[i] = W [i] a[i�1] + b[i]

a[i] = g[i](z[i])
ŷ = a[n]

The activation functions g(·) are generally different at the final layer. Thus g[2]
might be softmax for multinomial classification or sigmoid for binary classification,
while ReLU or tanh might be the activation function g(·) at the internal layers.

Replacing the bias unit In describing networks, we will often use a slightly sim-
plified notation that represents exactly the same function without referring to an ex-
plicit bias node b. Instead, we add a dummy node a0 to each layer whose value will
always be 1. Thus layer 0, the input layer, will have a dummy node a[0]0 = 1, layer 1
will have a[1]0 = 1, and so on. This dummy node still has an associated weight, and
that weight represents the bias value b. For example instead of an equation like

h = s(Wx+b) (7.12)

we’ll use:

h = s(Wx) (7.13)

But now instead of our vector x having n values: x = x1, . . . ,xn, it will have n+
1 values, with a new 0th dummy value x0 = 1: x = x0, . . . ,xn0 . And instead of
computing each h j as follows:

h j = s

 n0X

i=1

Wjixi +b j

!
, (7.14)

we’ll instead use:

s

 n0X

i=0

Wjixi

!
, (7.15)

x= x1, x2, …, xn0 x= x0, x1, x2, …, xn0

Replacing the bias unit

x1 x2

y1

xn0…

…

+1

b

…
U

W

y2 yn2

h1 h2 h3 hn1

x1 x2

y1

xn0…

…

x0=1

…
U

W

y2 yn2

h1 h2 h3 hn1

Instead of: We'll do this:

Lecture outline
38

n Neural units
n The XOR problem
n Feed-Forward Neural Networks
n Training Neural Nets

Loss function
39

n Binary classiffication with sigmoid function at the
output layer
¨ Cross entropy loss (same as logistic regression)

Loss function
40

n Multinomial classification with softmax function

𝐿() ;𝑦, 𝑦 = −'
#*!

(

𝑦# log ?𝑦#

n Representing 𝑦 as one-hot vector, where true class
is 𝑖

𝑦# = 1 and 𝑦+ = 0 ∀ 𝑗 ≠ 𝑖

n Loss function becomes

𝐿() ;𝑦, 𝑦 = − log ?𝑦# = − log
𝑒%!

∑+*!, 𝑒%"

Computing the Gradient
41

n Calculate partial derivative of the loss function with
respect to each parameter

n In neural networks, computing gradients for weights
in layers is complicated!

n Solution: error backpropagation, or backprop
(Rumelhart et al., 1986) .

Computation graphs
42

n Backpropagation is the same as backward
differentiation

n Backward differentiation depends on computation
graphs

Computation graphs
43

n The computation is broken down into separate
operations, each of which is modeled as a node in a
graph

n Consider: 𝐿 𝑎, 𝑏, 𝑐 = 𝑐 𝑎 + 2𝑏
¨ series of computation

n 𝑑 = 2 ∗ 𝑏
n 𝑒 = 𝑎 + 𝑑
n 𝐿 = 𝑐 ∗ 𝑒

Backward differentiation on compution graphs
44

n We would like to compute !"
!#

!"
!$

!"
!%

n Chain rule
𝑑𝑢
𝑑𝑥 =

𝑑𝑢
𝑑𝑣 &

𝑑𝑣
𝑑𝑥

¨ We can apply the chain rule to more than two functions

On compution graph
𝐿 = 𝑐𝑒

So:
𝜕𝐿
𝜕𝑐 = 𝑒

𝜕𝐿
𝜕𝑎 =

𝜕𝐿
𝜕𝑒
𝜕𝑒
𝜕𝑎

𝜕𝐿
𝜕𝑏 =

𝜕𝐿
𝜕𝑒
𝜕𝑒
𝜕𝑑

𝜕𝑑
𝜕𝑏

Backward differentiation on compution graphs
45

Backward differentiation for a neural network
46

n Derivatives of activation functions
¨ Sigmoid: !"

!#
= 𝜎(𝑧)(1 − 𝜎 𝑧)

¨ Tanh: !$%&'(#)
!(#)

= 1 − tanh*(𝑧)

¨ ReLU: !+,-.(#)
!(#)

= #0 for 𝑥 < 0
1 for 𝑥 ≥ 0

Training neural networks
47

n We apply gradient-based optimization algorithms
¨ SGD
¨ Adam
¨ …

n Aspects we need to care when training
¨ Weight initialization
¨ Regularization: dropout,…
¨ Hyperparameter tuning

n Learning rate
n Mini-batch size
n Model architecture

n Some libraries that support differentiation on compution
graphs: Pytorch, Tensorflow, Jax

