

Introduction to Neural Networks

Phạm Quang Nhật Minh

Aimesoft JSC minhpham0902@gmail.com

January 27, 2024

- Neural units
- The XOR problem
- Feed-Forward Neural Networks
- Training Neural Nets

Neural units

- The XOR problem
- Feed-Forward Neural Networks
- Training Neural Nets

Neural Network unit

The building block of a neural network

- \Box Weight vector $w = w_1 \dots w_n$
- \Box Bias term b
- \Box Activation function f

- The building block of a neural network
 - \Box Weight vector $w = w_1 \dots w_n$
 - \Box Bias term b
 - \Box Activation function f (non-linear)
- Output of a neural unit

$$y = a = f(z)$$

Here:

 $\Box z$ is the weighted sum

$$z = \sum_{i} w_i x_i + b$$
$$z = w \cdot x + b$$

There are many non-linear activation functions

🗆 Tanh

$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

□ Rectified Linear (ReLU)

$$y = \max(x, 0)$$

🗆 PReLU

□ ...

Activation functions

Tanh and ReLU functions

Suppose a unit hat

- W = [0.2, 0.
- b = 0.5

What happens with input x:

$$X = [0.5, 0.6, 0.1]$$

$$y = \boldsymbol{\sigma}(w \cdot x + b) =$$

Suppose a unit hat

- W = [0.2, 0]
- b = 0.5

What happens with the following input x?

$$x = [0.5, 0.6, 0.1]$$

$$y = \boldsymbol{\sigma}(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}} =$$

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}} = \frac{1}{1 + e^{-(.5 * .2 + .6 * .3 + .1 * .9 + .5)}} =$$

$$= x = [0.5, 0.6, 0.1]$$

$$x = [0.5, 0.6, 0.1]$$

$$x = [0.5, 0.6, 0.1]$$

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}} = \frac{1}{1 + e^{-(w \cdot x + b)}} = \frac{1}{1 + e^{-(.5 * .2 + .6 * .3 + .1 * .9 + .5)}} = \frac{1}{1 + e^{-0.87}} = .70$$

- Neural units
- The XOR problem
- Feed-Forward Neural Networks
- Training Neural Nets

Boolean functions

13

AND, OR, XOR functions

AND				OR			XOR		
x 1	x 2	у	x1	x2	у		x 1	x2	У
0	0	0	0	0	0		0	0	0
0	1	0	0	1	1		0	1	1
1	0	0	1	0	1		1	0	1
1	1	1	1	1	1		1	1	0

Boolean functions using Perceptron

14

Using Perceptron to compute above functions

$$y = \begin{cases} 0, & \text{if } w \cdot x + b \le 0\\ 1, & \text{if } w \cdot x + b > 0 \end{cases}$$

We can use Perceptron (a) for AND and (b) for OR

AND				OR				XOR		
-	x1	x 2	у	x1	x2	у	x1	x2	у	
	0	0	0	0	0	0	0	0	0	
	0	1	0	0	1	1	0	1	1	
	1	0	0	1	0	1	1	0	1	
	1	1	1	1	1	1	1	1	0	

- It's not possible to build a perceptron to compute logical XOR!
- The solution: neural networks!

- 16
- XOR solution with two-layer neural network and ReLU activation functions

XOR						
x 1	x2	У				
0	0	0				
0	1	1				
1	0	1				
1	1	0				

The solution: neural networks

x1	x2	h1	h2	y1
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	2	1	0

- Neural units
- The XOR problem
- Feed-Forward Neural Networks
- Training Neural Nets

Can also be called multi-layer perceptrons (or MLPs) for historical reasons

Simple feed-forward neural networks inclue:

- Input units
- 🗆 Hidden units
- Output units

A single hidden unit has:

- parameters w (the weight vector) and
- \Box Bias term b (scalar)
- Combine weight vectors and bias terms of units into matrix W and vector b

A single hidden unit has:

- parameters w (the weight vector) and
- \Box Bias term b (scalar)
- Combine weight vectors and bias terms of units into matrix W and vector b
- Output of the hidden layer, the vector h with sigmoid as the activation function

$$h = \sigma(Wx + \mathbf{b})$$

The activation function is applied to vector element-wise

$$g([z_1, z_2, z_3]) = [g(z_1), g(z_2), g(z_3)]$$

Dimensions of vectors and matrices

- 23
- Input layer (layer 0): $x \in \mathbb{R}^{n_0}$
- Hidden layer (layer 1): $h \in \mathbb{R}^{n_1}$, $b \in \mathbb{R}^{n_1}$
- Weight matrix: $W \in \mathbb{R}^{n_1 \times n_0}$

- 24
- If we do binary classification and use sigmoid function at the output layer, we use a single output unit

For multi-class classification, we use K units in output layer and softmax function

 \Box *K* is the number of classes

(we don't count the input layer in counting layers!)

Reminder: softmax: a generalization of sigmoid

For a vector z of dimensionality k, the softmax is:

softmax(z) =
$$\left[\frac{\exp(z_1)}{\sum_{i=1}^{k} \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)}, \dots, \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)}\right]$$

Example:

softmax
$$(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^k \exp(z_j)} \quad 1 \le i \le k$$

z = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]softmax(z) = [0.055, 0.090, 0.006, 0.099, 0.74, 0.010]

Two-Layer Network with scalar output

Two-Layer Network with scalar output

Two-Layer Network with scalar output

Multi-layer Notation

Multi Layer Notation

34

$$\begin{array}{rcl} z^{[1]} &=& W^{[1]}a^{[0]} + b^{[1]} \\ a^{[1]} &=& g^{[1]}(z^{[1]}) \\ z^{[2]} &=& W^{[2]}a^{[1]} + b^{[2]} \\ a^{[2]} &=& g^{[2]}(z^{[2]}) \\ \hat{y} &=& a^{[2]} \end{array}$$

for *i* in 1..n $z^{[i]} = W^{[i]} a^{[i-1]} + b^{[i]}$ $a^{[i]} = g^{[i]}(z^{[i]})$ $\hat{y} = a^{[n]}$

Replacing the bias unit

- Let's switch to a notation without the bias unit
- Just a notational change
- 1. Add a dummy node $a_0=1$ to each layer
- 2. Its weight w_0 will be the bias
- 3. So input layer $a_0^{[0]}=1$,

$$\Box \quad \text{And } a^{[1]}_{0} = 1, a^{[2]}_{0} = 1, \dots$$

Instead of: this:

We'll do

$$x = x_{1}, x_{2}, \dots, x_{n0}$$

$$x = x_{0}, x_{1}, x_{2}, \dots, x_{n0}$$

$$h = \sigma(Wx + b)$$

$$h_{j} = \sigma\left(\sum_{i=1}^{n_{0}} W_{ji}x_{i} + b_{j}\right)$$

$$\sigma\left(\sum_{i=0}^{n_{0}} W_{ji}x_{i}\right)$$

Instead of:

We'll do this:

Lecture outline

- 38
- Neural units
- The XOR problem
- Feed-Forward Neural Networks
- Training Neural Nets

Binary classiffication with sigmoid function at the output layer

□ Cross entropy loss (same as logistic regression)

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

Multinomial classification with softmax function

$$L_{CE}(\widehat{y}, y) = -\sum_{i=1}^{C} y_i \log \widehat{y}_i$$

Representing y as one-hot vector, where true class is i

$$y_i = 1$$
 and $y_j = 0 \forall j \neq i$

Loss function becomes

$$L_{CE}(\hat{y}, y) = -\log \hat{y}_i = -\log \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$$

Computing the Gradient

- 41
- Calculate partial derivative of the loss function with respect to each parameter
- In neural networks, computing gradients for weights in layers is complicated!
- Solution: error backpropagation, or backprop (Rumelhart et al., 1986).

Computation graphs

42

Backpropagation is the same as backward differentiation

 Backward differentiation depends on computation graphs

- The computation is broken down into separate operations, each of which is modeled as a node in a graph
- Consider: L(a, b, c) = c(a + 2b)

series of computation

d = 2 * b e = a + d L = c * e d = 2 * b d = 2 * b

Backward differentiation on compution graphs

44

• We would like to compute $\frac{\partial L}{\partial a} \frac{\partial L}{\partial b} \frac{\partial L}{\partial c}$

Chain rule

$$\frac{du}{dx} = \frac{du}{dv} \cdot \frac{dv}{dx}$$

We can apply the chain rule to more than two functions

On compution graph

So: $\frac{\partial L}{\partial c} = e$ $\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a}$ $\frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$

Backward differentiation on compution graphs

45

$$L = ce : \frac{\partial L}{\partial e} = c, \frac{\partial L}{\partial c} = e$$
$$e = a + d : \frac{\partial e}{\partial a} = 1, \frac{\partial e}{\partial d} = 1$$
$$d = 2b : \frac{\partial d}{\partial b} = 2$$

Backward differentiation for a neural network

46

Derivatives of activation functions

$$\Box \text{ Sigmoid: } \frac{d\sigma}{dz} = \sigma(z)(1 - \sigma(z))$$
$$\Box \text{ Tanh: } \frac{d \tan h(z)}{d(z)} = 1 - \tanh^2(z)$$
$$\Box \text{ ReLU: } \frac{d \operatorname{ReLU}(z)}{d(z)} = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$$

Training neural networks

- 47
- We apply gradient-based optimization algorithms
 SGD
 - 🗆 Adam
 - □ ...
- Aspects we need to care when training
 - Weight initialization
 - Regularization: dropout,...
 - Hyperparameter tuning
 - Learning rate
 - Mini-batch size
 - Model architecture
- Some libraries that support differentiation on compution graphs: Pytorch, Tensorflow, Jax