Introduction to Neural Networks

Pham Quang Nhat Minh
Aimesoft JSC
minhpham0902 @gmail.com

January 27, 2024

;i Lecture outline

2
m Neural units

m The XOR problem

m Feed-Forward Neural Networks
m Training Neural Nets

;:i Lecture outline

JEEE 2
m Neural units

m The XOR problem

m Feed-Forward Neural Networks
m Training Neural Nets

i Neural Network unit
L

m The building block of a neural network

Weight vectorw = wy ...w,,
Bias term b
Activation function f

Output value

Non-linear transform

Weighted sum

Weights

Input layer X; X, X3

i Neural unit
e

m The building block of a neural network

Weight vectorw = wy ...w,,
Bias term b
Activation function f (non-linear)

m Output of a neural unit
y=a=f(2)
Here:

Z is the weighted sum

Z=zWiXi+b
[

Z=W-X+Db

i Non-Linear Activation functions

m There are many non-linear activation functions

Sigmoid
= 0(2) = —
Y=o T ez
Tanh ’
eZ — o~ Z

yzez+eﬂ

Rectified Linear (RelLU)
y = max(x, 0)

PRelLU

m Tanh and RelLU functions

i Activation functions

tanh(x)

y:

1.0

0.5

0.0

-0.5

-1.015

=5

(a)

10

=5

10

¥ & An example
N

Suppose a unit has:
mw = [0.2,0.3,0.9]
mpb = 0.5

What happens with input x:
mx = [0.5,0.6,0.1]

y=0o(w-x+b)=

¥ & An example
N

Suppose a unit has:
mw = [0.2,0.3,0.9]
mpb = 0.5

What happens with the following input x?
mx = [0.5,0.6,0.1]

1
Y = G(W')C—I—b) — 14+ e (wxtb)

¥ & An example
N

Suppose a unit has:
B w = [0.2,0.3,0.9]
m b = 0.5

What happens with input x:
B x = [0.5,0.6,0.1]

1
Y = G(W°x+b) — 14 e~ (wxtb)
1
]+ o (5%2+.6x3+.1x9+5)

¥ § An example
-]

Suppose a unit has:
B w = [0.2,0.3,0.9]
m b = 0.5

What happens with input x: InPython:

import numpy as np

mx = [0.5,0.6,0.1] y = 1/ (1+np.exp (-
(np.dot (w,x) + b)))

1
y:G(W°X—|—b): 1_|_e—(w-x—|—b) —
1 1

I_Fe—(5x2+6x3+ix9+5):: il%—e_087 3:::70

;:i Lecture outline

o2
m Neural units

m The XOR problem

m Feed-Forward Neural Networks
m Training Neural Nets

i Boolean functions

m AND, OR, XOR functions

AND OR XOR
X1 x2|y X1 x21|y X1 x2|y
O 0 |0 O 0 |0 O 0 |0
O 1 (0 O 1 |1 O 1 |1
1 0 (0 1 0 |1 1 0 |1
1 1 |1 1 1 |1 1 1 (0
72
O °
0 O S—
X1
0 1
a) x; AND x,

¥ & Boolean functions using Perceptron
ey

m Using Perceptron to compute above functions
0, ifw-x+b<0
yz{l, ifw:-x+b>0
m We can use Perceptron (a) for AND and (b) for OR

X4 X4
\\\L\\\ \\\1
X2#17© Xz_’IE"O
-1 0
1 e
AND OR XOR
X1 x2|y X1 x2|y X1 x2|y
O 0 (0 O 0 |0 O 0 (0
O 1 (0 O 1 |1 O 1 |1
1 0 (0 1 0 |1 1 0 (1
1 1 |1 1 1 |1 1 1 (0

i The XOR problem
s 4

m It’s not possible to build a perceptron to compute
logical XOR!

m The solution: neural networks!

22,
1 O . O
0 G O
0 1
a) x; AND x,

®
0 O—~—0—%,
0 ~ 1
b) x; ORX,

X
2,
O O
9
Y
O @ X,
0 1
¢) x; XOR X,

¥ § The solution: neural networks
| 16

m XOR solution with two-layer neural network and
RelLU activation functions

D, XOR
1 -2 x1 x2
0! 0 s

S = = <

—_—
— =D
- D =

¥ § The solution: neural networks

-—(=).
~>/

. 1
[
el el = =)
= =)
S = = QDI

0 0 0 ° .
0 1 1 °)
1 0 1) :
1 1 2 ' .

:i Lecture QUtIine
sy
m Neural units

m The XOR problem

m Feed-Forward Neural Networks
m Training Neural Nets

i Feedforward Neural Networks
_—

m Can also be called multi-layer perceptrons (or MLPs)
for historical reasons

i Feed-forward neural networks
@]

m Simple feed-forward neural networks inclue:

Input units
Hidden units
Output units

i Feed-forward neural networks
24

m Asingle hidden unit has:
parameters w (the weight vector) and

Bias term b (scalar)

m Combine weight vectors and bias terms of units into
matrix W and vector b

i@’i Feed-forward neural networks
o2

m Asingle hidden unit has:
parameters w (the weight vector) and
Bias term b (scalar)

m Combine weight vectors and bias terms of units into
matrix W and vector b

m Output of the hidden layer, the vector h with
sigmoid as the activation function
h=ocWx+Db)
The activation function is applied to vector element-wise
m 9(121,22,23]) = [9(21), 9(22), g(23)]

¥ & Dimensions of vectors and matrices
R

m Input layer (layer 0): x € R™o
m Hidden layer (layer 1): h € R™1, b € R™
m Weight matrix: W € R"™1*"o

Input Layer € R® Hidden Layer € R4 Output Layer € R 3

;i Output |ayer
[z]

m If we do binary classification and use sigmoid
function at the output layer, we use a single output
unit

i Output layer
KN

m For multi-class classification, we use K units in
output layer and softmax function
K is the number of classes

ewc-x—l—bc

p(y=clx) = —

Zewj-x—l—bj

J=1

Input Layer € R® Hidden Layer € R4 Output Layer € R 3

i Binary Logistic Regression as a 1-layer Network
26§

(we don't count the input layer in counting layers!)

Output layer ‘ y=oc(Ww-:x+b)
(0 node) m (y is a scalar)
W Wi Wi b (scalar)
(vector)

e @ @ @ @ @

vector X

i Multinomial Logistic Regression as a 1-layer Network
oz

Fully connected single Iayer network

Output layer ‘ ‘ ‘ y = softmax(Wx + b)
(softmax nodes) y IS a vector
W / '. '.""‘ ‘ \ \ b
W is a , ’ | \ b is a vector
matrix

IR EY

scalars

i Reminder: softmax: a generalization of sigmoid
1

m For a vector z of dimensionality k, the softmax is:

exp (z1) exp (z2) exp (zx)

p y 7 oy =
Zizlexp(zi) ZizleXP(Zi) Zi:leXP(Zi)

softmax(z) =

m Example:

exp (2i) 1<i<k

Srexp(z) T

z=100.6,1.1,—-1.5,1.2,3.2, —1.1]
softmax(z) = [0.055,0.090,0.006,0.099,0.74,0.010]

softmax(z;) =

i Two-Layer Network with scalar output

Output layer ’ y = 0(z) yisascalar

(o node) U z=Uh

hidden units ' ' ‘ h=oc(Wx+Db)

(0 nOde) 0\\ Could be ReLU
W ’ / 4) "N b Or tanh

| I
o) & @ O Woa

i Two-Layer Network with scalar output

Output layer ’ Yy = O'(Z) y is a scalat
(o0 node) U z=Uh
hidden units ‘ h=o(Wx+Db)

wh

(0 node) <
AN b vector

N

& -
*< v
=" -
- »
-
\

Input layer
(vector)

i Two-Layer Network with scalar output

Output layer ’ y = ad(z) yisascalar

(o node) U z=Uh

hidden units ' ' ‘ h=oc(Wx+Db)

(0 nOde) 0\\ Could be RelLU
W ’ / . V. N b Or tanh

| I
o) & @ O Woa

i Two-Layer Network with softmax output

Output layer @ ‘ Y = ls/c;lftmax(z)
o p 7 =
(o node) U ' y is a vector
hidden units ' ‘ h=oc(Wx+Db)
(0 nOde) 0\\ Could be RelLU
W | / § e K N b Or tanh

| I
o) & @ O Woa

y = al?]
W[2 ‘¢ al?2l = gl2l¢,12] ' '
- gl21(z2] sigmoid or softmax
| b[Z] — w2lglil 4 pl2]
D @ O
. | [1] —
\ b[l] 711 = wtlglol 4 plil

i Multi Layer Notation
T

A = wllglol 4 pll
alll = g1y
2l — wllgl] 4 pl2l
2 = gl for iin 1..n
_ 0 2i = Wwha -t + b0
alil = gli(Zlih
y = a[n]

N
|

S
|

<>
|

i Replacing the bias unit
-]

m Let's switch to a notation without the bias unit
m Just a notational change
1. Add adummy node a,=1 to each layer
2. Its weight w, will be the bias
3. Soinput layer al® =1,
And altl =1, al?l =1,...

i Replacing the bias unit

]
m Instead of: We'll do
this:
X=X, Xy, oeo, xno X— XO, X, Xoy oeey an
h=0o(Wx+b) h=o(Wx)

no 10
hj =0 (Z WjiXi —|-bj) o (ZO Wjixi)

i Replacing the bias unit

We'll do this:

Instead of:

fi Lecture outline

o8
m Neural units

m The XOR problem

m Feed-Forward Neural Networks
m Training Neural Nets

¥ & Loss function
o

m Binary classiffication with sigmoid function at the
output layer
Cross entropy loss (same as logistic regression)

Lee(9,y) = —logp(ylx) = —[ylogy+ (1 —y)log(1—7)]

i Loss function
KN

m Multinomial classification with softmax function
C

yilogy;
=1

Lece(Vy) = —

l
m Representing y as one-hot vector, where true class
IS 1
yi=landy; =0V j#i
m Loss function becomes

eZi

Leg(,y) = —logd; = —log=x
j=1

e?i

i@i Computing the Gradient
ey
m Calculate partial derivative of the loss function with

respect to each parameter

m In neural networks, computing gradients for weights
in layers is complicated!

m Solution: error backpropagation, or backprop
(Rumelhart et al., 1986) .

§ & Computation graphs

2 1

m Backpropagation is the same as backward
differentiation

m Backward differentiation depends on computation
graphs

;i COmPUtatiOn graphs
JERC N

m The computation is broken down into separate
operations, each of which is modeled as a node in a
graph

m Consider: L(a,b,c) = c(a + 2b)

series of computation
md=2+%b . forward pass
me=a+d
mlL=c=xe

i Backward differentiation on compution graphs
e d

. JdL OL OL
m We would like to compute ~ 35 30
m Chain rule
du du dv
dx dv dx

We can apply the chain rule to more than two functions

On compution graph

L =ce) forward pass
So: \/%

L
ac ¢
aL_aLae

da 0deda

0L 9L de dd
b~ de ad db

i Backward differentiation on compution graphs

backward pass

i Backward differentiation for a neural network
L&

m Derivatives of activation functions

Sigmoid: Z—Z =0(2)(1 —0a(2))
dtanh(z)

Tanh: i

= 1 — tanh?(2)

.dReLU(z) _ |0 for x <0
Rl = = {1 forx =0

'°°**iTraining neural networks
e ...

m We apply gradient-based optimization algorithms
SGD
Adam

m Aspects we need to care when training
Weight initialization
Regularization: dropout,...
Hyperparameter tuning
m Learning rate
m Mini-batch size
m Model architecture

m Some libraries that support differentiation on compution
graphs: Pytorch, Tensorflow, Jax

