
N-gram Language Models

Phạm Quang Nhật Minh
AImesoft JSC

minhpham0902@gmail.com

February 3, 2024



Agenda
2

n Introduction to N-grams
n Estimating N-gram probabilities
n Evaluating language model
n Generalization and zeros
n Smoothing techniques:

¨ Add-one (Laplace) smoothing
¨ Interpolation, Backoff



Suggested readings
3

n Chapter 3. Language Modeling with N-Grams (SLP)
¨ https://web.stanford.edu/~jurafsky/slp3/3.pdf

n Language Models, by Michael Collins.
¨ http://www.cs.columbia.edu/~mcollins/lm-

spring2013.pdf

n NLP Programming Tutorials, by Graham Neubig
¨ http://www.phontron.com/slides/nlp-programming-en-

01-unigramlm.pdf
¨ http://www.phontron.com/slides/nlp-programming-en-

02-bigramlm.pdf

https://web.stanford.edu/~jurafsky/slp3/3.pdf
http://www.cs.columbia.edu/~mcollins/lm-spring2013.pdf
http://www.cs.columbia.edu/~mcollins/lm-spring2013.pdf
http://www.phontron.com/slides/nlp-programming-en-01-unigramlm.pdf
http://www.phontron.com/slides/nlp-programming-en-01-unigramlm.pdf
http://www.phontron.com/slides/nlp-programming-en-02-bigramlm.pdf
http://www.phontron.com/slides/nlp-programming-en-02-bigramlm.pdf


The language modeling problem
4

n Goal: compute the probability of a sentence or 
sequence of words.

𝑃 𝑊 = 𝑃(𝑤!, 𝑤", … , 𝑤#)
¨ E.g., 𝑃 Hôm nay trời đẹp quá =
𝑃(Hôm, nay, trời, đẹp, quá)

n Related task: probability of an upcoming word:
𝑃(𝑤$|𝑤!, 𝑤", 𝑤%)

¨ E.g., 𝑃(đẹp|Hôm, nay, trời)

n A model that computes either of these: 𝑃 𝑊 or 
𝑃(𝑤#|𝑤!, 𝑤", … , 𝑤#&!) is called a language model.



Why language models?
5

n Machine Translation:
¨P(high winds tonite) > P(large winds tonite)

n Spell Correction
¨The office is about fifteen minuets from my house

n P(about fifteen minutes from) > P(about fifteen 
minuets from)

n Speech Recognition
¨P(I saw a van) >> P(eyes awe of an)



How to compute P(W)

n How to compute this joint probability:

¨P(its, water, is, so, transparent, that)

n Intuition: let’s rely on the Chain Rule of Probability



The Chain Rule
7

n Conditional probabilities
𝑃 𝐵 𝐴 = 𝑃(𝐴, 𝐵)/𝑃(𝐴)

n Rewriting:
𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝑃 𝐵 𝐴



The Chain Rule cont.
8

n More variables:
𝑃 𝐴, 𝐵, 𝐶, 𝐷 = ?

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴, 𝐵, 𝐶 𝑃 𝐷 𝐴, 𝐵, 𝐶
= 𝑃(𝐴, 𝐵)𝑃 𝐶|𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶
= 𝑃 𝐴 𝑃(𝐵|𝐴)𝑃 𝐶|𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶



The Chain Rule cont.
9

n The Chain Rule in general

𝑃 𝑥!, 𝑥", 𝑥%, … , 𝑥#
= 𝑃 𝑥! 𝑃 𝑥" 𝑥! 𝑃 𝑥% 𝑥!, 𝑥" …𝑃(𝑥#|𝑥!, … , 𝑥#&!)



Applying the Chain Rule for joint probability
10

𝑃 𝑤!𝑤"…𝑤# =1
'

𝑃(𝑤'|𝑤!𝑤"…𝑤'&!)

P(“its water is so transparent”) =
P(its) × P(water|its) × P(is|its water) 
× P(so|its water is) × P(transparent|its water is so)



How to estimate these probabilities
11

n Could we just count and divide?

n No! Too many possible sentences!
n We’ll never see enough data for estimating these

€ 

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)



Markov Assumption
12

n Simplifying assumption:

𝑃(the|its water is so transparent that) ≈ 𝑃(the|that)

n Or maybe:

𝑃(the|its water is so transparent that)
≈ 𝑃(the|transparent that)



Markov Assumption
13

n We approximate each component in the product

n So the joint probability of the sequence is

  

€ 

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)

  

€ 

P(w1w2…wn ) ≈ P(wi |wi−k…wi−1)
i
∏



Simplest case: Unigram model
14

𝑃(𝑤!𝑤"…𝑤#) ≈1
'
𝑃(𝑤')



Bigram model
15

Condition on the previous word:

𝑃 𝑤' 𝑤!𝑤"…𝑤'&! ≈ 𝑃(𝑤'|𝑤'&!)



Agenda
16

n Introduction to N-grams
n Estimating N-gram probabilities
n Evaluating language model
n Generalization and zeros
n Smoothing techniques:

¨ Add-one (Laplace) smoothing
¨ Interpolation, Backoff



Unigram language model
17

n Do not use history

𝑃 𝑤!𝑤"…𝑤# =1
'

𝑃(𝑤')

n Estimate 𝑃(𝑤') by using  Maximum Likelihood 
Estimate (MLE)

𝑃 𝑤' =
count(𝑤')

∑() count(𝑤))



Unigram language model: an example
18

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(nara) = 1/20 = 0.05
P(i)       = 2/20 = 0.1
P(</s>) = 3/20 = 0.15

P(W=i live in nara . </s>) =
   0.1 * 0.05 * 0.1 * 0.05 * 0.15 * 0.15 = 5.625 * 10-7



Bigram language model
19

n Condition on the previous word:
𝑃 𝑤' 𝑤!𝑤"…𝑤'&! ≈ 𝑃(𝑤'|𝑤'&!)

n The Maximum Likelihood Estimate

𝑃 𝑤' 𝑤'&! =
count(𝑤'&!, 𝑤')
count(𝑤'&!)



Bigram language model: an example
20

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

𝑃 I < s > =
2
3 = .67 𝑃 Sam < s > =

1
3 = .33 𝑃 am I =

2
3
= .67

𝑃 </s > Sam =
1
2
= .5 𝑃 Sam am =

1
2
= .5 𝑃 do I =

1
3 = .33



More examples: 
Berkeley Restaurant Project sentences

21

n can you tell me about any good cantonese
restaurants close by

n mid priced thai food is what i’m looking for
n tell me about chez panisse
n can you give me a listing of the kinds of food that are 

available
n i’m looking for a good place to eat breakfast
n when is caffe venezia open during the day



Raw bigram counts
22

n Out of 9222 sentences



Raw bigram probabilities
23

n Normalize by unigrams:

n Results:



Bigram estimates of sentence probabilities
24

P(<s> I want english food </s>) =
P(I|<s>)   
× P(want|I)  
× P(english|want)   
× P(food|english)   
× P(</s>|food)
= .000031



What kinds of knowledge?
25

n P(english|want)  = .0011
n P(chinese|want) =  .0065
n P(to|want) = .66
n P(eat | to) = .28
n P(food | to) = 0
n P(want | spend) = 0
n P(i | <s>) = .25



Practical Issues
26

n We do everything in log space
¨ Avoid underflow
¨ (also adding is faster than multiplying)

𝑃 𝑝!×𝑝"×𝑝%×𝑝$ = log 𝑝! + log 𝑝" + log 𝑝% + log 𝑝$



Language Modeling Toolkits
27

n SRILM
¨ http://www.speech.sri.com/projects/srilm/

n KenLM
¨ https://kheafield.com/code/kenlm/

http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/


Agenda
28

n Introduction to N-grams
n Estimating N-gram probabilities
n Evaluating language model
n Generalization and zeros
n Smoothing techniques:

¨ Add-one (Laplace) smoothing
¨ Interpolation, Backoff



Evaluation: How good is our model?
29

n Does our language model prefer good sentences to 
bad ones?
¨ Assign higher probability to “real” or “frequently 

observed” sentences
n than “ungrammatical” or “rarely observed” sentences



Evaluation: How good is our model?
30

n We train parameters of our model on a training set.

n We test the model’s performance on data we 
haven’t seen
¨ A test set is an unseen dataset that is different from our 

training set, totally unused.
¨ An evaluation metric tells us how well our model does on 

the test set.



Two evaluation approaches
31

n Extrinsic evaluation
¨ Compare two language models in downstream tasks

n e.g., Spelling correction, speech recognition, MT

n Intrinsic evaluation
¨ Use some evaluation measures on the test set
¨ We will use perplexity



Extrinsic evaluation of N-gram models
32

n Best evaluation for comparing models A and B
¨ Put each model in a task

n spelling corrector, speech recognizer, MT system
¨ Run the task, get an accuracy for A and for B

n How many misspelled words corrected properly
n How many words translated correctly

¨ Compare accuracy for A and B



Difficulty of extrinsic evaluation of N-gram models
33

n Extrinsic evaluation
¨ Time-consuming; can take days or weeks

n So
¨ Sometimes use intrinsic evaluation: perplexity
¨ Bad approximation 

n unless the test data looks just like the training data
n So generally only useful in pilot experiments

¨ But is helpful to think about.



Intuition of Perplexity
34

n The Shannon Game:
¨ How well can we predict the next word?

¨ Unigrams are terrible at this game.  (Why?)

n A better model of a text
¨ is one which assigns a higher probability to the word that 

actually occurs

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100



Perplexity
35

n The best language model is one that best predicts an 
unseen test set
¨ Gives the highest P(sentence)

n Perplexity is the inverse probability of the test set, 
normalized by the number of words

PP(W ) = P(w1w2...wN )
−

1
N

           =
1

P(w1w2...wN )
N

Chain rule

For bigram

Minimizing PPL is the same 
as maximizing probability



Perplexity (2)
36

log" 𝑃𝑃 𝑊 = !
=
∑'>!= log"

!
?((!|(!"#)

= − !
=
∑'>!= log" 𝑃(𝑤'|𝑤'&!)

Entropy H

𝑃𝑃 𝑊 = 2C



Lower perplexity = better model
37

n Training 38 million words, test 1.5 million words, 
WSJ

N-gram 
Order

Unigram Bigram Trigram

Perplexity 962 170 109



Agenda
38

n Introduction to N-grams
n Estimating N-gram probabilities
n Evaluating language model
n Generalization and zeros
n Smoothing techniques:

¨ Add-one (Laplace) smoothing
¨ Interpolation



Zero probabilities

n Training set:
… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

n Test set
… denied the offer
… denied the loan

39



Problems with Zero probabilities
40

n We underestimate the probability of all sorts of 
words that might occur

n The entire probability of the test set is 0.
¨ So, we cannot calculate perplexity



Agenda
41

n Introduction to N-grams
n Estimating N-gram probabilities
n Evaluating language model
n Generalization and zeros
n Smoothing techniques:

¨ Add-one (Laplace) smoothing
¨ Interpolation



Laplace smoothing
42

n Add one to all the counts
n Pretend we saw each word one more time than we 

did

n MLE unigram probabilities: 

𝑃DE(𝑤') =
𝑐(𝑤')
𝑁

n Add-1 estimate: 

𝑃FGHIGJK =
𝑐 𝑤' + 1

∑( 𝑐(𝑤 + 1)
=
𝑐 𝑤' + 1
𝑁 + 𝑉



Laplace smoothing: unigram model
43

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(nara) = 1/20 = 0.05
P(i)       = 2/20 = 0.1
P(</s>) = 3/20 = 0.15
P(kyoto) = 0/20 = 0

Vocab = {i, live, in, osaka, am, gradudate, 
student, my, school, is, nara, </s>}

V = 12



Laplace smoothing: unigram model
44

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(nara) = (1+1)/(20+12) = 0.0625
P(i)       = (2+1)/(20+12) = 0.09375
P(</s>) = (3+1)/(20+12) = 0.125
P(kyoto) = (0+1)/(20+12) = 0.03125

Vocab = {i, live, in, osaka, am, gradudate, student, my, 
school, is, nara, </s>}

V = 12



Laplace smoothing: bigrams
45

n MLE estimate: 

𝑃DE 𝑤' 𝑤'&! =
𝑐(𝑤'&!, 𝑤')
𝑐(𝑤'&!)

n Add-1 estimate: 

𝑃FGHIGJK =
𝑐 𝑤'&!, 𝑤' + 1

∑( 𝑐(𝑤'&!𝑤 + 1)
=
𝑐 𝑤'&!, 𝑤' + 1
𝑐 𝑤'&! + 𝑉



Berkeley Restaurant Corpus: Laplace smoothed 
bigram counts

46



Laplace-smoothed bigrams
47

𝑃∗(𝑤'|𝑤'&!) =
𝑐 𝑤'&!, 𝑤' + 1
𝑐 𝑤'&! + 𝑉



Agenda
48

n Introduction to N-grams
n Estimating N-gram probabilities
n Evaluating language model
n Generalization and zeros
n Smoothing techniques:

¨ Add-one (Laplace) smoothing
¨ Interpolation



Linear interpolation
49

n Mix trigrams, bigrams and unigrams
𝑃 𝑤' 𝑤'&", 𝑤'&!
= 𝜆!×𝑃DE 𝑤' 𝑤'&", 𝑤'&! + 𝜆"×𝑃DE 𝑤' 𝑤'&!
+ 𝜆%×𝑃DE(𝑤')

where 𝜆! + 𝜆" + 𝜆# = 1, and 𝜆$ ≥ 0 for all 𝑖

n Sometimes, all trigrams, bigrams, unigrams do not 
exist
¨ Recall: 𝑃 𝑤$ = 𝜆×𝑃%& 𝑤$ + (1 − 𝜆)× !

'



How to set lambdas?
50

n Use a held-out corpus

n Choose λs to maximize the probability of held-out 
data:
¨ Fix the N-gram probabilities (on the training data)
¨ Then search for λs that give largest probability to held-out 

set:

Training Data Held-Out 
Data

Test 
Data

logP(w1...wn |M (λ1...λk )) = logPM (λ1...λk ) (wi |wi−1)
i
∑



Example: bigrams
51

n Maximum-likelihood estimation:
¨ P(osaka | in) = c(in osaka)/c(in) = 1/2 = 0.5
¨ P(nara | in) = c(in nara)/c(in) = 1/2 = 0.5
¨ P(school | in) = c(in school)/c(in) = 0/2 = 0

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>



Example: interpolation
52

n Using interpolation
¨ 𝑃 school in = 𝜆"𝑃%& school in) + (

)
1 −

𝜆" 𝑃(school)

¨ 𝑃 school = 𝜆!𝑃%& school + 1 − 𝜆!
!
'

= 𝜆!×
1
20

+ (1 − 𝜆!)×
1
𝑁

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>


