

### **N-gram Language Models**

#### Phạm Quang Nhật Minh

Almesoft JSC minhpham0902@gmail.com

February 3, 2024



- Introduction to N-grams
- Estimating N-gram probabilities
- Evaluating language model
- Generalization and zeros
- Smoothing techniques:
  - □ Add-one (Laplace) smoothing
  - Interpolation, Backoff



### Suggested readings

- 3
- Chapter 3. Language Modeling with N-Grams (SLP)
  - https://web.stanford.edu/~jurafsky/slp3/3.pdf
- Language Models, by Michael Collins.
  - http://www.cs.columbia.edu/~mcollins/lmspring2013.pdf
- NLP Programming Tutorials, by Graham Neubig
  - http://www.phontron.com/slides/nlp-programming-en-01-unigramlm.pdf
  - http://www.phontron.com/slides/nlp-programming-en-02-bigramlm.pdf

### The language modeling problem

- 4
- Goal: compute the probability of a sentence or sequence of words.

$$P(W) = P(w_1, w_2, \dots, w_n)$$

- E.g., P(Hôm nay trời đẹp quá) = P(Hôm, nay, trời, đẹp, quá)
- Related task: probability of an upcoming word: *P*(*w*<sub>4</sub>|*w*<sub>1</sub>, *w*<sub>2</sub>, *w*<sub>3</sub>)

   E.g., *P*(dep|Hôm, nay, trời)
- A model that computes either of these: P(W) or  $P(w_n|w_1, w_2, ..., w_{n-1})$  is called a language model.



#### Machine Translation:

P(high winds tonite) > P(large winds tonite)

#### Spell Correction

□ The office is about fifteen **minuets** from my house

- P(about fifteen minutes from) > P(about fifteen minuets from)
- Speech Recognition
  - □ P(I saw a van) >> P(eyes awe of an)



How to compute this joint probability:

 $\Box P($ its, water, is, so, transparent, that)

Intuition: let's rely on the Chain Rule of Probability



### • Conditional probabilities P(B|A) = P(A,B)/P(A)

Rewriting:

$$P(A,B) = P(A)P(B|A)$$



#### More variables:

$$P(A, B, C, D) = ?$$

### P(A, B, C, D) = P(A, B, C)P(D|A, B, C)= P(A, B)P(C|A, B)P(D|A, B, C)= P(A)P(B|A)P(C|A, B)P(D|A, B, C)



#### The Chain Rule in general

$$P(x_1, x_2, x_3, \dots, x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) \dots P(x_n|x_1, \dots, x_{n-1})$$



$$P(w_1w_2...w_n) = \prod_i P(w_i|w_1w_2...w_{i-1})$$

P("its water is so transparent") =

10

P(its) × P(water | its) × P(is | its water)

× P(so|its water is) × P(transparent|its water is so)



Could we just count and divide?

P(the lits water is so transparent that) =Count(its water is so transparent that the)Count(its water is so transparent that)

- No! Too many possible sentences!
- We'll never see enough data for estimating these



12

#### **Markov Assumption**

#### Simplifying assumption:

 $P(\text{the}|\text{its water is so transparent that}) \approx P(\text{the}|\text{that})$ 

Or maybe:

 $P(\text{the}|\text{its water is so transparent that}) \approx P(\text{the}|\text{transparent that})$ 



We approximate each component in the product

$$P(w_i \mid w_1 w_2 \dots w_{i-1}) \approx P(w_i \mid w_{i-k} \dots w_{i-1})$$

So the joint probability of the sequence is

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i \mid w_{i-k} \dots w_{i-1})$$



 $P(w_1w_2\dots w_n)\approx \prod_i P(w_i)$ 



15

#### Condition on the previous word:

$$P(w_i|w_1w_2...w_{i-1}) \approx P(w_i|w_{i-1})$$



- Introduction to N-grams
- Estimating N-gram probabilities
- Evaluating language model
- Generalization and zeros
- Smoothing techniques:
  - □ Add-one (Laplace) smoothing
  - Interpolation, Backoff



Do not use history

$$P(w_1w_2\dots w_n) = \prod_i P(w_i)$$

Estimate P(w<sub>i</sub>) by using Maximum Likelihood Estimate (MLE)

$$P(w_i) = \frac{\operatorname{count}(w_i)}{\sum_{w'} \operatorname{count}(w')}$$

### Unigram language model: an example

18

i live in osaka . </s> i am a graduate student . </s> my school is in nara . </s>

P(nara) = 1/20 = 0.05 P(i) = 2/20 = 0.1P(</s>) = 3/20 = 0.15

P(W=i live in nara . </s>) = 0.1 \* 0.05 \* 0.1 \* 0.05 \* 0.15 \* 0.15 = 5.625 \* 10<sup>-7</sup>



#### • Condition on the previous word: $P(w_i|w_1w_2 \dots w_{i-1}) \approx P(w_i|w_{i-1})$

## • The Maximum Likelihood Estimate $P(w_i|w_{i-1}) = \frac{\operatorname{count}(w_{i-1}, w_i)}{\operatorname{count}(w_{i-1})}$

### Bigram language model: an example

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

20

<s> I am Sam </s> <s> Sam I am </s> <s> I do not like green eggs and ham </s>

$$P(|| < s) = \frac{2}{3} = .67 \qquad P(|| < s) = \frac{1}{3} = .33 \qquad P(||||) = \frac{2}{3} = .67$$
$$P(||||) = \frac{1}{2} = .67$$
$$P(|||) = \frac{1}{2} = .5 \qquad P(|||) = \frac{1}{3} = .33$$



#### More examples: Berkeley Restaurant Project sentences

- 21
- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day



#### Out of 9222 sentences

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

22



### **Raw bigram probabilities**

#### Normalize by unigrams:

| i    | want | to   | eat | chinese | food | lunch | spend |
|------|------|------|-----|---------|------|-------|-------|
| 2533 | 927  | 2417 | 746 | 158     | 1093 | 341   | 278   |

#### Results:

|         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|---------|---------|------|--------|--------|---------|--------|--------|---------|
| i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |



### **Bigram estimates of sentence probabilities**

- P(<s> I want english food </s>) =
  - P(I|<s>)
  - × P(want|I)
  - × P(english|want)
  - × P(food|english)
  - × P(</s>|food)
    - = .000031



### What kinds of knowledge?

- P(english|want) = .0011
- P(chinese|want) = .0065
- P(to|want) = .66
- P(eat | to) = .28
- P(food | to) = 0
- P(want | spend) = 0
- P(i | <s>) = .25



#### We do everything in log space

- Avoid underflow
- □ (also adding is faster than multiplying)

 $P(p_1 \times p_2 \times p_3 \times p_4) = \log p_1 + \log p_2 + \log p_3 + \log p_4$ 



27

### Language Modeling Toolkits

#### SRILM

http://www.speech.sri.com/projects/srilm/

#### KenLM

https://kheafield.com/code/kenlm/



- Introduction to N-grams
- Estimating N-gram probabilities
- Evaluating language model
- Generalization and zeros
- Smoothing techniques:
  - Add-one (Laplace) smoothing
  - Interpolation, Backoff



### **Evaluation: How good is our model?**

- 29
- Does our language model prefer good sentences to bad ones?
  - Assign higher probability to "real" or "frequently observed" sentences
    - than "ungrammatical" or "rarely observed" sentences



### **Evaluation: How good is our model?**

- 30
- We train parameters of our model on a training set.
- We test the model's performance on data we haven't seen
  - A test set is an unseen dataset that is different from our training set, totally unused.
  - An evaluation metric tells us how well our model does on the test set.



#### Extrinsic evaluation

Compare two language models in downstream tasks

- e.g., Spelling correction, speech recognition, MT
- Intrinsic evaluation
  - □ Use some evaluation measures on the test set
  - □ We will use **perplexity**



- 32
- Best evaluation for comparing models A and B
  - Put each model in a task
    - spelling corrector, speech recognizer, MT system
  - Run the task, get an accuracy for A and for B
    - How many misspelled words corrected properly
    - How many words translated correctly
  - □ Compare accuracy for A and B



### Difficulty of extrinsic evaluation of N-gram models

#### 33

#### Extrinsic evaluation

Time-consuming; can take days or weeks

#### So

- Sometimes use intrinsic evaluation: perplexity
- □ Bad approximation
  - unless the test data looks just like the training data

#### So generally only useful in pilot experiments

But is helpful to think about.



### **Intuition of Perplexity**



□ Unigrams are terrible at this game. (Why?) \ and 1e-100

#### A better model of a text

is one which assigns a higher probability to the word that actually occurs



- 35
- The best language model is one that best predicts an unseen test set
  - □ Gives the highest P(sentence)
- Perplexity is the inverse probability of the test set, normalized by the number of words

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

Minimizing PPL is the same as maximizing probability

$$= \sqrt[N]{\frac{1}{P(w_1w_2...w_N)}}$$
Chain rule
$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$
For bigram
$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$



$$\log_2 PP(W) = \frac{1}{N} \sum_{i=1}^{N} \log_2 \frac{1}{P(w_i | w_{i-1})}$$
$$= -\frac{1}{N} \sum_{i=1}^{N} \log_2 P(w_i | w_{i-1})$$
Entropy H

$$PP(W) = 2^H$$



### Lower perplexity = better model

- 37
- Training 38 million words, test 1.5 million words, WSJ

| N-gram<br>Order | Unigram | Bigram | Trigram |
|-----------------|---------|--------|---------|
| Perplexity      | 962     | 170    | 109     |



- Introduction to N-grams
- Estimating N-gram probabilities
- Evaluating language model
- Generalization and zeros
- Smoothing techniques:
  - Add-one (Laplace) smoothing
  - Interpolation



**3**9

Training set:
 ... denied the allegations
 ... denied the reports
 ... denied the claims
 ... denied the request

P("offer" | denied the) = 0

Test set ... denied the offer ... denied the loan



### **Problems with Zero probabilities**

- 40
- We underestimate the probability of all sorts of words that might occur
- The entire probability of the test set is 0.
  - □ So, we cannot calculate perplexity



- Introduction to N-grams
- Estimating N-gram probabilities
- Evaluating language model
- Generalization and zeros
- Smoothing techniques:
  - Add-one (Laplace) smoothing
  - Interpolation



- Add one to all the counts
- Pretend we saw each word one more time than we did
- MLE unigram probabilities:  $P_{ML}(w_i) = \frac{c(w_i)}{N}$
- Add-1 estimate:

$$P_{\text{Laplace}} = \frac{c(w_i) + 1}{\sum_{w} (c(w) + 1)} = \frac{c(w_i) + 1}{N + V}$$



### Laplace smoothing: unigram model

i live in osaka . </s> i am a graduate student . </s> my school is in nara . </s> P(nara) = 1/20 = 0.05 P(i) = 2/20 = 0.1 P(</s>) = 3/20 = 0.15P(kyoto) = 0/20 = 0

Vocab = {i, live, in, osaka, am, gradudate, student, my, school, is, nara, </s>}

V = 12



- i live in osaka . </s> i am a graduate student . </s> my school is in nara . </s>
- Vocab = {i, live, in, osaka, am, gradudate, student, my, school, is, nara, </s>}

V = 12

$$P(nara) = (1+1)/(20+12) = 0.0625$$
  

$$P(i) = (2+1)/(20+12) = 0.09375$$
  

$$P() = (3+1)/(20+12) = 0.125$$
  

$$P(kyoto) = (0+1)/(20+12) = 0.03125$$



#### MLE estimate:

$$P_{ML}(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

• Add-1 estimate:  

$$P_{\text{Laplace}} = \frac{c(w_{i-1}, w_i) + 1}{\sum_{w} (c(w_{i-1}w) + 1)} = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$



# Berkeley Restaurant Corpus: Laplace smoothed bigram counts

46

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 6  | 828  | 1   | 10  | 1       | 1    | 1     | 3     |
| want    | 3  | 1    | 609 | 2   | 7       | 7    | 6     | 2     |
| to      | 3  | 1    | 5   | 687 | 3       | 1    | 7     | 212   |
| eat     | 1  | 1    | 3   | 1   | 17      | 3    | 43    | 1     |
| chinese | 2  | 1    | 1   | 1   | 1       | 83   | 2     | 1     |
| food    | 16 | 1    | 16  | 1   | 2       | 5    | 1     | 1     |
| lunch   | 3  | 1    | 1   | 1   | 1       | 2    | 1     | 1     |
| spend   | 2  | 1    | 2   | 1   | 1       | 1    | 1     | 1     |



$$P^*(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$

|         | i       | want    | to      | eat     | chinese | food    | lunch   | spend   |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| i       | 0.0015  | 0.21    | 0.00025 | 0.0025  | 0.00025 | 0.00025 | 0.00025 | 0.00075 |
| want    | 0.0013  | 0.00042 | 0.26    | 0.00084 | 0.0029  | 0.0029  | 0.0025  | 0.00084 |
| to      | 0.00078 | 0.00026 | 0.0013  | 0.18    | 0.00078 | 0.00026 | 0.0018  | 0.055   |
| eat     | 0.00046 | 0.00046 | 0.0014  | 0.00046 | 0.0078  | 0.0014  | 0.02    | 0.00046 |
| chinese | 0.0012  | 0.00062 | 0.00062 | 0.00062 | 0.00062 | 0.052   | 0.0012  | 0.00062 |
| food    | 0.0063  | 0.00039 | 0.0063  | 0.00039 | 0.00079 | 0.002   | 0.00039 | 0.00039 |
| lunch   | 0.0017  | 0.00056 | 0.00056 | 0.00056 | 0.00056 | 0.0011  | 0.00056 | 0.00056 |
| spend   | 0.0012  | 0.00058 | 0.0012  | 0.00058 | 0.00058 | 0.00058 | 0.00058 | 0.00058 |



- Introduction to N-grams
- Estimating N-gram probabilities
- Evaluating language model
- Generalization and zeros
- Smoothing techniques:
  - Add-one (Laplace) smoothing
  - □ Interpolation



Mix trigrams, bigrams and unigrams  $P(w_i|w_{i-2}, w_{i-1})$   $= \lambda_1 \times P_{ML}(w_i|w_{i-2}, w_{i-1}) + \lambda_2 \times P_{ML}(w_i|w_{i-1})$   $+ \lambda_3 \times P_{ML}(w_i)$ where  $\lambda_1 + \lambda_2 + \lambda_3 = 1$ , and  $\lambda_i \ge 0$  for all i

 Sometimes, all trigrams, bigrams, unigrams do not exist

$$\square \text{ Recall: } P(w_i) = \lambda \times P_{ML}(w_i) + (1 - \lambda) \times \frac{1}{N}$$



#### How to set lambdas?

#### Use a held-out corpus



- Choose λs to maximize the probability of held-out data:
  - □ Fix the N-gram probabilities (on the training data)
  - Then search for λs that give largest probability to held-out set:

$$\log P(w_1...w_n \mid M(\lambda_1...\lambda_k)) = \sum_i \log P_{M(\lambda_1...\lambda_k)}(w_i \mid w_{i-1})$$



#### **Example: bigrams**

i live in osaka . </s> i am a graduate student . </s> my school is in nara . </s>

- Maximum-likelihood estimation:
   P(osaka | in) = c(in osaka)/c(in) = 1/2 = 0.5
   P(nara | in) = c(in nara)/c(in) = 1/2 = 0.5
  - $\Box$  P(school | in) = c(in school)/c(in) = 0/2 = 0



### **Example: interpolation**

i live in osaka . </s> i am a graduate student . </s> my school is in nara . </s>

■ Using interpolation □  $P(\text{school} | \text{in}) = \lambda_2 P_{ML}(\text{school} | \text{in}) + (1 - \lambda_2)P(\text{school})$ 

$$\square P(\text{school}) = \lambda_1 P_{ML}(\text{school}) + (1 - \lambda_1) \frac{1}{N}$$
$$= \lambda_1 \times \frac{1}{20} + (1 - \lambda_1) \times \frac{1}{N}$$