1.10 Specifying the Collection Classes

= Chapter 1 Exercise <

The exercises in this chapter help practise class design with UML class diagram notation
and design specification. To ease reading, some of the relevant exercises given in [19]

are reproduced here.

1. (Greeting Conversation) Figure 1.17 is an extended design diagram of the greet-
ing conversation program discussed in the previous tutorial. This diagram shows
a few more attributes of the two classes Person and MobilePhone, but it presents

only a partial list of operations.

Person MobilePhone

- manName : String
- model : String

- id : Integer
- name : String .
- phone: MobilePhone - color: Char

- year: Integer

+ setNime(String) - guaranteed: Boolean
+ greet() + setColor(Char)

Figure 1.17: An initial design diagram for the greeting conversation program.

The following table is a partially completed table of the domain constraints that
apply to the attributes of the two classes in Figure 1.17. Note that the “type”
column lists the formal types of the attributes. Attribute MobilePhone.color
takes a character value that denotes a colour of the phones. The characters are: ‘R’
(forred), ‘0’ (for orange), ‘Y’ (for yellow), ‘B’ (for blue), ‘P’ (for purple). Attribute
MobilePhone.guaranteed takes the value true for a mobile phone if this phone

has a guarantee; it takes the value false if otherwise.

Class Attribute type mutable optional length min max
Person id Integer F F - 1 -
name String T F 30 - -
phone MobilePhone T T - - -
MobilePhone = manName String
model String
color Character
year Integer
guaranteed Boolean

(a). Complete the domain constraints in the table, using your practical under-
standing of the application.

(b). Write the initial design specification for each class, which must include the
object representation.

(c). Determine a minimum set of operations needed for each class. Justify your

choice of each operation.

47



1.10 Specifying the Collection Classes

(d). Update the design diagram with the operations that you identified in the
previous task.

(e). Update the design specification of each class to include the operational
specification.

. (Greeting conversation v1.1) Implement an enum named Color that catures the

different colours mentioned in the program requirement. Update class MobilePhone

to use this enum.

. (Greeting conversation v1.2) Update class MobilePhone to address an additional

constraint that attribute model must be of the form M-ABC—M N P, where ABC

is a 3-letter word and M N P is a 3-digit word. For example, M-SAM-123 is a valid

phone model, but M-SOM-123 is not.

. (Greeting conversation v1.3) Update class Person to address an additional con-

straint that attribute name must consist of at least two words that are separated by

a white space.

. Specify a class EvenIntSet that represents a set of even numbers. This is an

integer set that only accepts even numbers as elements.

. (see [19]) Specify a map class, named StringIntMap, which maps strings to

integers. Maps allow an existing mapping to be looked up. Maps are also mutable:

new pairs can be added to a map, and an existing mapping can be removed. Be

sure that your data type is adequate.

. (see [19]) Specify a class IntQueue that represents a bounded queue of integers.

A bounded queue is a queue that has an upper bound, established when the queue

is created, on the number of integers that can be stored in the queue. Queues are

mutable and provide access to their elements in first-in/first-out order. IntQueue

operations include:

IntQueue(int n)
enq(int x)

int deqQ)

The constructor creates a new queue with maximum size n, enq adds an element
to the front of the queue, and deq removes the element from the end of the queue.
You may include extra operations as needed for adequacy.

. (see [19]) Specify a rational number type, named Rat.

48



2.9 Implementing the main method

= Chapter 2 Exercise <>

The exercises in this chapter continue from those in Chapter 1 with two main objectivies:
(1) review the design and (2) implement the design in Java. Note that some exercises

were reproduced from [19].

1. (Greeting Conversation) Review the design of and implement the GreetingConversation
program of Exercise 1.1:
(a). Review the design of and implement class Person.
(b). Review the design of and implement class MobilePhone.
(c). Create an program class named GreetingConversation, whose main
method performs the following basic object manipulation tasks:
o create a MobilePhone object.
o create a Person object.
o check that the objects are valid and if so display information about them,
else display suitable error messages.

2. (Greeting Conversation v1.1-1.3) Review the design of and implement the three
improvements to GreetingConversation discussed in Exercise 1.2-Exercise 1.4.
Update method GreetingConversation.main to make use of the improved de-
sign.

3. Review the design of and implement class EvenIntSet of Exercise 1.5. Create
an program class named EvenIntegers, whose main method performs the basic
object manipulation of EvenIntSet.

4. Review the design of and implement class StringIntMap Exercise 1.6. Create an
program class named MixedMaps, whose main method performs the basic object
manipulation of StringIntMap.

5. Review the design of and implement class IntQueue Exercise 1.7. Create an
program class named NumQueue, whose main method performs the basic object
manipulation of IntQueue.

6. Review the design of and implement class Rat Exercise 1.8. Create an program
class named Rationals, whose main method performs the basic object manipu-

lation of Rat.

78



