
Tutorial 02 Type hierarchy

1 Chapter exercises
The figures below are scanned images of the relevant chapter exercises that are listed in the MD for this
tutorial. Refer to the updated exercise notes below the figures.

Software Engineering Page 1

Software Engineering Page 2

Ex1.1. Ex 7.1

Change from IntList in the requirement to java.util.List and replace rep invariant and
abstraction function by abstract properties. That is, you are to specify and implement a sub-type of
java.util.List that provides methods for returning the smallest and largest elements of the list.
Let's call this sub-type by the name MaxMinIntList.

Note: Interface List has a number of sub-types already provided in Java

 1. Read the API documentation of interface List

 2. Draw a UML class diagram of List and complete it with the essential members.

 3. What are the class sub-types of List? As you identify these sub-types, add them to the UML
class diagram of List to create a type hierarchy.

 4. Choose a class sub-type of List that you are familiar with and use it to write a simple Java
program to create a List containing the following integers 1, 5, 3, 2, 7, 9, 10, 4 and to display
the list content to the standard console.

 5. Decide whether to define MaxMinIntList as a direct sub-type of List or a sub-type of one of
its class subtypes. Try to think of at least two designs for MaxMinIntList.

Ex1.2. Ex 7.8-11

To do these exercises, you need to refer to the slides about the meaning of sub-type in the lecture slides.
Note that you need to use the header rule instead of signature rule (mentioned in the text book) as part
of your discussion of the validity of the subtypes.

2 Additional Exercises
These exercises are designed to help you review the core type hierarchy concepts and techniques. Some
of these exercises are based on the Vehicle type hierarchy example that was used in the lecture.

Ex2.1. Inheritance

 1. Update the two classes Bus and Car so that their weight constraints are as follow:

 1.1. Bus.weight is in the range [5000.0, 20000.0] (kgs)

 1.2. Car.weight is in the range [1000.0, 2000.0] (kgs)

 2. Update the two classes Bus and Car so that they now have the following constraints on the
length dimension:

 2.1. Bus.length is in the range [4.0, 10.0] (meters)

 2.2. Car.length is in the range [1.5, 3.5] (meters)

 3. Update class Vehicle to have a new attribute called registrationNumber. Based on your
practical understanding of this attribute, decide a suitable data type and domain constraint for it.

Note: you must update and/or define the operations that are relevant to the new attribute.

 4. Update the two classes Bus and Car so that they each have a different domain constraint for the

Software Engineering Page 3

attribute registrationNumber from the domain constraint defined in the class Vehicle. For
example, if Vehicle.registrationNumber's domain constraint specifies that the attribute
can contain up to 12 alpha-numerical characters then Bus.registrationNumber's and
Car.registrationNumber's could specify that it only contains up to 8 and (respectively) 6
such characters.

 5. Update the three classes Vehicle, Bus and Car so that the toString method can be removed
from Bus and Car, and that the inherited toString method from the class Vehicle now
provides the accurate class label for not only Vehicle but also for Bus and Car.

Hint: In Java, you can use the following statement in a method of a class to obtain the name of
the run-time (actual) class of an object of that class: this.getClass().getSimpleName().

 6. Define in the class Vehicle a new operation named travel, which travels from a given point
A to another point B. This operation can simply print a message to the standard console
detailing the travelling (e.g. the type of vehicle, the two points, and the number of seats (i.e.
passengers)). However, it must use a specialised symbol for the type of vehicle object that this
operation is being invoked on. For instance, if you invoke it on a Bus object then the message
must use a specialised symbol for Bus. This feature requires you to also update the two sub-
types Bus and Car of Vehicle.

Hint: In Java, you can use Unicode characters as text symbols. These characters are written in
the form '\uXXXX' where 'XXXX' are hexadecimal characters. A searchable database of
Unicode characters is available at this web site: http://unicode-table.com/en/.

 7. Define a two new subtypes of Vehicle: Motorbike and Boat. Use your practical
understandings of these two types to add at least one attribute to each with suitable domain
constraints.

Ex2.2. Method Overriding

 1. Improve the three classes Vehicle, Bus, and Car from Ex2.1.4 so that each class has a method
named validateRegistrationNumber (which validates the value of attribute
registrationNumber), and the two methods of Bus and Car override that of Vehicle.

Ex2.3. Sub-types with extra attributes

 1. Update the class vehiclesextra.Bus so that it now has the following constraint on the
attribute routes:

 1.1. Bus.routes only contain values in the range [1,100]

 2. Update the class vehiclesextra.Car so that it now has the following constraint on the
attribute owner:

 2.1. Car.owner must not be more than 255 characters in length

 3. Design and code a new sub-type of Vehicle called IronSuit, which models the iron suit that
is worn by Mr. Stark in the movie named Iron Man
(https://en.wikipedia.org/wiki/Iron_Man_(2008_film)). Class IronSuit must have at least one
distinctive attribute and it must be completed with all the necessary operations. One essential
operation, for instance, is fly, which should carry the person wearing the suit from a point A to
another point B in the air.

Software Engineering Page 4

http://unicode-table.com/en/
https://en.wikipedia.org/wiki/Iron_Man_(2008_film

In this basic version of the class IronSuit, operation fly should simply print out a message
on the standard console about these flying facts: the two points and the distance between them.
You need to decide how to the class IronSuit knows about the distances between the pre-
defined points.

 4. Update the operation IronSuit.fly in Ex2.3.3, so that it can simulate on the standard console
the actual fly path from point A to point B. The longer the distance, the longer the path and the
travel time. You need to decide how to measure the fly time based on the distance and need to
choose a suitable symbol that best represents the path.

Hint: In Java, you can use the following code to cause a program to pause for a given number of
milli-seconds:

int millies = 1000; // 1 second

try {

 Thread.sleep(millis); // pause

 // wakes up: do something (e.g. print a console message)

} catch (InterruptedException e) {

 // no problems: ignore

}

Ex2.4. Interface

 1. Update class IronSuit to implement the interface named Flyable. You must create this
interface to have the operation named fly (introduced in Ex2.3.3) defined in it.

Ex2.5. Multiple implementations

 1. Design and code the following type hierarchy, which is used to provide implementations of
different sorting algorithms. You must decide on the suitable attributes and operations that need
to be defined in the super-type and in each of the sub-types.

Super type: SortingAlg

Sub-types: BubleSortAlg, QuickSortAlg, MergeSortAlg, …

Ex2.6. Object sorting
java.lang.Comparable, java.util.Comparator

Read the Java API about these interfaces and answer the following questions:

 1. What are the above interfaces used for?

 2. What operation(s) must a subclass implement?

 3. Update class Vehicle to implement the Comparable interface:

 3.1. to compare Vehicle objects based their names

 4. * How do you design Vehicle to support both ASC and DESC sorting orders?

Software Engineering Page 5

3 Submission
Submit your report to the home work submission box of this tutorial on the FIT portal. Name the file as
follows: student-id_class_hwk02.zip, where student-id is your student id, class is the code of the class
that you attend.

Software Engineering Page 6

	1 Chapter exercises
	Ex1.1. Ex 7.1
	Ex1.2. Ex 7.8-11

	2 Additional Exercises
	Ex2.1. Inheritance
	Ex2.2. Method Overriding
	Ex2.3. Sub-types with extra attributes
	Ex2.4. Interface
	Ex2.5. Multiple implementations
	Ex2.6. Object sorting

	3 Submission

