Hypothesis Test

"Hypothesis Test": A procedure for deciding between two hypotheses (null hypothesis – alternative hypothesis) on the basis of observations in a random sample

Sampling models

A. One sample model

 One sample model usually concerns with an intervention on population: If the intervention should make some change in population?

One – sample Hypothesis test

- Compare proportion to a given value of rate
- Compare mean value to a given value of expectation

Example 1. If in Ha Dong District less than 90% motorcyclists use helms?

Example 2. If proportion of girl-students equals to 50% ?

Example 3. If in Viet Nam bred feeding is popular among more than 70% women?

Test 1. Compare proportion to a given rate

Two tails (sides) test:

(Null) Hypothesis Alternative Hypothesis

Lower (left) tail test:

(Null) Hypothesis Alternative Hypothesis

Upper (right) tail test:

(Null) Hypothesis Alternative Hypothesis $H_0: p = q$ $H_a: p \text{ differs from } q$

 $\begin{array}{l} H_0: p \geq q \\ H_a: p < q \end{array}$

Test 1. Compare proportion to a given rate

 $(X_1, X_2, ..., X_n)$ - a sample of *n* independent observations collected from a binary variable **X** taking value 1 with (unknown) probability *p* $(0 and value 0 with probability <math>1 - p \rightarrow$ Given a number *q*, how to have a conclusion comparing *p* with *q* based on information of the sample?

Solution

By Moivre-Laplace Theorem, for large sample size, $n \ge 5$ and $n \ge (1-p) \ge 5$,

sample proportion m(p)/n of appearance of number 1 has distribution approximate to normal distribution with expectation p and variance $p \times (1-p)/n$. Then a testing procedure can be as follows:

Step 1. Estimate a sample proportion by $p^{*} = m(p) / n$ Calculate z-test statistic $z_q = (p^{-q}) [p^{*}(1-p^{+})/n]^{1/2}$

(Null) Hypothesis $H_0: p = q$ Alternative Hypothesis $H_a: p \neq q$

P-value Approach

Step 2. (two sides test)

Approach A (p-value method): Calculate the probability such that the distance from estimate point to p^{\wedge} should be more than $|q - p^{\wedge}|$:

b = P{ $|Y - q| > |p^{-} - q|$ } = P{ $|Z| > |z_q|$ } where Y is a normal variable with mean p^{-} and variance $p^{-} \times (1-p^{-})/n$, while Z is the standard normal variable (the normal variable with mean 0 and variance 1).

b = Probability (*p-value*) of wrong decision of excluding estimation value *q* (saying that *q* differs from true value of *p*) when this value should be a "good" value of estimation

Step 3. (two sides test) Compare b to the significance level α ($\alpha = 10\%$, 5%, 1%, ...)

• If $b \leq \alpha \rightarrow reject$ the hypothesis H_0 , conclude that q differs from p, because possibility of getting mistake in decision is "very small"

* If $b > \alpha \rightarrow accept the hypothesis H_0, confirm <math>q = p$, because possibility of having mistake by rejecting the hypothesis is too high.

(Null) Hypothesis $H_0: p = q$ Alternative Hypothesis $H_a: p \neq q$

Critical value Approach

Step 2. (two sides test) Approach B (critical value method): With the given significance level α ($\alpha = 10\%$, 5%, 1%, ...), calculate the critical value $z_{1-\alpha/2}$, the number point such that $1-\alpha/2$ is the probability of the standard normal variable Z taking values smaller or equal to $z_{1-\alpha/2}$:

 $1-\alpha/2 = P\{Z \le z_{1-\alpha/2}\}$

Step 3. (two sides test) Compare absolute value of the z-test statistic ($|z_q|$) too the critical value $z_{1-\alpha/2}$ ($\alpha = 10\%$, 5%, 1%, ...)

• If $|\mathbf{z}_{\mathbf{q}}| \ge \mathbf{z}_{1-\alpha/2} \rightarrow reject$ the hypothesis H_0 , conclude that \mathbf{q} differs from \mathbf{p} .

* If $|\mathbf{z}_{\mathbf{q}}| < \mathbf{z}_{1-\alpha/2} \rightarrow accept$ the hypothesis H_0 , confirm q = p.

(Null) Hypothesis Alternative Hypothesis

 $H_0: p = q$ $H_a: p \neq q$

Confidence Interval Approach

Approach C. Using confidence interval

With *confidence level* of **95%**, we can use confidence interval for hypothesis testing:

Decide

• **Reject the Hypothesis** H if the confidence interval does not contain the point *q*

Accept the Hypothesis H if the confidence interval contains the point q

Using Excel to Compute Normal P-value and Critical Value

- Excel has two functions for computing P-value and critical respect to normal distribution:
 - <u>NORMDIST</u>, <u>NORMSDIST</u> are used to compute the P-values.
 - <u>NORMINV</u> and <u>NORMSINV</u> are used to compute the Critical values.

Compare mean value to a given value of expectation

Test 2. Compare mean value to a given value of expectation

Problem: Taking a sample from a variable X with normal distribution, we need to compare the **expectation** μ of X to a given value **u**.

Hypothesis $H_0: \mu = u$ Alternative Hypothesis $H_a: \mu$ differs (\neq, \leq, \geq) from u

(Null) Hypothesis Alternative Hypothesis

Lower (left) tail test:

(Null) Hypothesis H_0 :Alternative Hypothesis H_a :

Upper (right) tail test:

(Null) Hypothesis	H ₀ :	μ ≤	U
Alternative Hypothesis	H _a :	μ >	U

H₀: μ = uH_a: μ differs from u

 $H_0: \mu \ge u$ $H_a: \mu < u$

Compare mean value when variance of variable is unknown For testing the above hypothesis, the distribution of sample mean value must be known. When **variance of variable is unknown** the following theorem can be applied:

Theorem. Let $(X_1, X_2, ..., X_n)$ be a sample of *n* independent observations taken from a normal distributed variable *X* with expectation μ , \overline{X} is sample mean value and S^2 is sample variance. Then the (new) variable $t = \frac{\sqrt{n-1}}{S} . (\overline{X} - \mu)$

has T-Student distribution with (*n*-1) degrees of freedom.

Student (T) distribution

Parameter of Student Distribution: "Degree of Fredom"

t Distribution

26

t Distribution

 For more than 100 degrees of freedom, the standard normal z value provides a good approximation to the t value.

Steps of Testing

Step 1. Estimate sample Mean Value Mean(X) Standard Deviation SD(X)

Step 2. Calculate the statistic

$$t(u) = \frac{\sqrt{n-1}.(Mean(X) - u)}{SD(X)}$$

where n is sample size and u is the given value to which the mean value has be compared

(Null) Hypothesis $H_0: \mu = u$ Alternative Hypothesis $H_a: \mu$ differs from u

P-value Approach

Step 2. (two sides test) Approach A (p-value method): Calculate the probability $\mathbf{b} = \mathbf{P}\{|\mathbf{T}(n-1)| \ge |t(u)|\},\$ where $\mathbf{T}(n-1)$ is a variable which has Student distribution with (n-1) degrees of freedom.

b = Probability (*p***-value**) of wrong decision of excluding estimation value *u* when this value should be a "good" value of estimation

Step 3. (two sides test) Compare b to the significance level α ($\alpha = 10\%$, 5%, 1%, ...)

• If $b \leq \alpha \rightarrow$ reject the hypothesis H_0 , conclude that μ differs from u, because possibility of getting mistake in decision is "very small"

* If $b > \alpha \rightarrow accept the hypothesis H_0$, confirm $\mu = u$, because possibility of having mistake by rejecting the hypothesis is too high.

(Null) Hypothesis $H_0: \mu = u$ Alternative Hypothesis $H_a: \mu$ differs from u

Critical value Approach

Step 2. (two sides test) Approach B (critical value method): With the given significance level α ($\alpha = 10\%, 5\%, 1\%, ...$), calculate the critical value $t_{1-\alpha/2}$, the number point such that $1-\alpha/2$ is the probability of the Student distributed variable T(n-1) taking values smaller or equal to $t_{1-\alpha/2}$:

 $1 - \alpha/2 = \mathsf{P}\{T(n - 1) \le t_{1 - \alpha/2}\}$

Step 3. (two sides test) Compare absolute value of the t-test statistic (|t(u)|) too the critical value $t_{1-\alpha/2}$ $(\alpha = 10\%, 5\%, 1\%, ...)$

• If $|t(u)| \ge t_{1-\alpha/2} \rightarrow reject$ the hypothesis H_0 , conclude that μ differs from u.

* If $|t(u)| < t_{1-\alpha/2} \rightarrow accept the hypothesis H_0$, confirm $\mu = u$.

(Null) Hypothesis $H_0: \mu = u$ Alternative Hypothesis $H_a: \mu$ differs from u

Confidence Interval Approach

Approach C. Using confidence interval

With *confidence level* of $(1-\alpha)$, we can use confidence interval for hypothesis testing:

Decide

• **Reject the Hypothesis** H if the confidence interval does not contain the point *u*

Accept the Hypothesis H if the confidence interval contains the point u

Using Excel to Compute Student P-value and Critical Value

• Excel has two functions for computing P-value and critical respect to Student distribution:

- <u>TDIST</u> is used to compute the P-values.
- <u>TMINV</u> is used to compute the Critical values.