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Energy balance

• Q. Earth’s surface temperature 
generally depends on which 
factors?

1. Solar flux
2. Earth’s reflectivity, called 

albedo

3

EBM: Energy Balance Model

3. Heat exchanges with the atmosphere
4. Energy radiated by the surface
5. The amount of warming provided by the atmosphere
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0-D EBM

4

- S: Solar constant, for the Earth, S=1370W/m2

- α: planetary albedo (~0.3)
- σ: Stefan-Boltzman constant (5.6696E-8 W/m2K4).
à Te=-18ºC

• If in the atmosphere, there are GHGs à surface
temperature Ts >Te.

• Ts =Te+ΔT or
ΔT: greenhouse increment
ε: planetary emissivity

εσTs
4 =σTe

4
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0-D EBM
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• For the Earth, ΔT~ 33K. Let α=0.3 à ? Ts
• Let ε =0.6 à ? Ts

Example
• Venus: measured Ts ~730K. S=2619Wm-2, α=0.7 à Te=?

• Ts =Te+ΔT

εσTs
4 =σTe

4

ε replaces a very complex process à parameterization
The procedure to find ε so that Ts is the closest to the real value à
tuning

Te=242K.
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The Greenhouse Effect
• In 0-D model (the Earth is considered as one point)à TE=255K
• Case 1: consider the atm with 1 layer, supposing the atm is 

transparent to shortwave radiation; and opaque to longwave 
radiation à ε≈1

Write the energy balance 
equations at:

à TOA
à Atmosphere 
à Surface
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The Greenhouse Effect
• ε≈1
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From these equations it is easily deduced that the temperature of the Earth’s surface 
 

! 

TS = 24 TE .          (2.6) 
 
Since TE=255 K, TS=303 K. This value is considerably higher than observed (288 K).  
 The discrepancy between theory and observation is explained by the fact that the 
atmosphere is not totally opaque to long-wave radiation, neither is it completely transparent 
to short wave radiation. Moreover, approximating the atmosphere by one homogeneous 
layer is obviously not accurate. Nevertheless, we can conclude that the presence of the 
atmosphere raises the temperature at the Earth’s surface considerably. This effect is referred 
to as the “greenhouse effect”. 
 We assume now that the atmosphere is “semi-grey”, i.e. it absorbs a constant fraction $ 
of the long-wave radiation, but is still transparent to Solar radiation59. In other words, the 
Earth’s surface emits energy at a rate U, given by  
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U ="TS
4 ,           (2.7) 

 
of which a fraction (1-$) escapes to space. According to Kirchhoff’s law the absorptance 
and emittance of a body are equal at any given temperature. Therefore, the atmosphere 
emits energy at a rate B given by 
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B = "#TA
4            (2.8) 

 
(upwards and downwards). In a steady state we have  
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With $=0.78 (i.e. 22 % of the terrestrial radiation escapes to space) and again #p=0.3, we 

                                                 
59 In a “grey” atmosphere absorption is totally independent of wavelength 
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
result for such a crude model. However, although the estimate of the average planetary 
albedo (#=0.3) is probably not far from reality, the estimate of the average emissivity 
($=0.78) is probably an under-estimate. It appears that actually only 10% of the terrestrial 
radiation (radiation emitted by the Earth’s surface) escapes directly to space. Suppose that 
$=0.9. We now obtain TS=296 K and TA=249 K. Thus, we have a better estimate of the 
temperature “halfway” with respect to the mass of the atmosphere (at 500 hPa), but a worse 
estimate of the surface temperature.  
 The best measure of the “strength of greenhouse effect” is the so-called back-
radiation, i.e. the downward emission of radiation from the atmosphere to the Earth’s 
surface, which, within the context of the one-layer model, is 
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F" = B = #$TA
4 =

#
2 %#

$TE
4 &

#
2 %#

Q .       (2.11) 

 
As $ increases the downward radiation increases, thereby increasing the temperature of the 
Earth’s surface. According to the above equation, the atmophere may radiate as much 
energy to the surface as the Sun. In reality this theoretical limit may even be exceeded 
(section 2.5). 
 

Altitude 
[km] 

Pressure 
[hPa] 

Temperature 
[K] 

Potential 
temperature 
[K] 

Brunt-
Väisälä 
frequency 
[s-1] 

water vapour 
density 
[g m-3] 

0 1013 288 287  5.9 
1 899 282 290 0.011 4.2 
2 795 275 294 0.011 2.9 
3 701 269 297 0.011 1.8 
4 616 262 301 0.011 1.1 
5 540 256 305 0.011 0.64 
6 472 249 309 0.011 0.38 
7 411 243 313 0.011 0.21 
8 356 236 317 0.012 0.12 
9 307 230 322 0.012 0.046 
10 264 223 326 0.012 0.018 
15 120 217 397 0.019 0.00072 
20 54.7 217 497 0.021 0.00044 
30 11.7 227 808 0.021 0.00038 
40 2.8 251 1349 0.022 0.000067 
50 0.76 271 2107 0.021 0.000012 
60 0.20 245 2789 0.016  
70 0.05 217 3670 0.017  

 
TABLE 2.1. The “1976 US standard atmosphere” is representative for the observed average temperature 
distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
column. The value of N at 1 km height is representative for the layer between the altitudes of 0 and 1 km, etc. 
The water vapour density is taken from Kuo-Nan Liou, 1992: Radiation and Cloud Processes in the 
Atmosphere. Oxford University Press. 504 pp. 
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As $ increases the downward radiation increases, thereby increasing the temperature of the 
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
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As $ increases the downward radiation increases, thereby increasing the temperature of the 
Earth’s surface. According to the above equation, the atmophere may radiate as much 
energy to the surface as the Sun. In reality this theoretical limit may even be exceeded 
(section 2.5). 
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TABLE 2.1. The “1976 US standard atmosphere” is representative for the observed average temperature 
distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
column. The value of N at 1 km height is representative for the layer between the altitudes of 0 and 1 km, etc. 
The water vapour density is taken from Kuo-Nan Liou, 1992: Radiation and Cloud Processes in the 
Atmosphere. Oxford University Press. 504 pp. 

TE=255K à Ts=303K 
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Earth à greenhouse effect

At the TOA

For the atmosphere

7

7

B2-SA-NDT-Earth System

The Greenhouse Effect
• Case 2: Assume the atm is semi-greyà ε<1

Write the energy balance 
equations at:

à TOA
à Atmosphere 
à Surface
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
result for such a crude model. However, although the estimate of the average planetary 
albedo (#=0.3) is probably not far from reality, the estimate of the average emissivity 
($=0.78) is probably an under-estimate. It appears that actually only 10% of the terrestrial 
radiation (radiation emitted by the Earth’s surface) escapes directly to space. Suppose that 
$=0.9. We now obtain TS=296 K and TA=249 K. Thus, we have a better estimate of the 
temperature “halfway” with respect to the mass of the atmosphere (at 500 hPa), but a worse 
estimate of the surface temperature.  
 The best measure of the “strength of greenhouse effect” is the so-called back-
radiation, i.e. the downward emission of radiation from the atmosphere to the Earth’s 
surface, which, within the context of the one-layer model, is 
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As $ increases the downward radiation increases, thereby increasing the temperature of the 
Earth’s surface. According to the above equation, the atmophere may radiate as much 
energy to the surface as the Sun. In reality this theoretical limit may even be exceeded 
(section 2.5). 
 

Altitude 
[km] 

Pressure 
[hPa] 

Temperature 
[K] 

Potential 
temperature 
[K] 

Brunt-
Väisälä 
frequency 
[s-1] 

water vapour 
density 
[g m-3] 

0 1013 288 287  5.9 
1 899 282 290 0.011 4.2 
2 795 275 294 0.011 2.9 
3 701 269 297 0.011 1.8 
4 616 262 301 0.011 1.1 
5 540 256 305 0.011 0.64 
6 472 249 309 0.011 0.38 
7 411 243 313 0.011 0.21 
8 356 236 317 0.012 0.12 
9 307 230 322 0.012 0.046 
10 264 223 326 0.012 0.018 
15 120 217 397 0.019 0.00072 
20 54.7 217 497 0.021 0.00044 
30 11.7 227 808 0.021 0.00038 
40 2.8 251 1349 0.022 0.000067 
50 0.76 271 2107 0.021 0.000012 
60 0.20 245 2789 0.016  
70 0.05 217 3670 0.017  

 
TABLE 2.1. The “1976 US standard atmosphere” is representative for the observed average temperature 
distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
column. The value of N at 1 km height is representative for the layer between the altitudes of 0 and 1 km, etc. 
The water vapour density is taken from Kuo-Nan Liou, 1992: Radiation and Cloud Processes in the 
Atmosphere. Oxford University Press. 504 pp. 
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distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
column. The value of N at 1 km height is representative for the layer between the altitudes of 0 and 1 km, etc. 
The water vapour density is taken from Kuo-Nan Liou, 1992: Radiation and Cloud Processes in the 
Atmosphere. Oxford University Press. 504 pp. 
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From these equations it is easily deduced that the temperature of the Earth’s surface 
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Since TE=255 K, TS=303 K. This value is considerably higher than observed (288 K).  
 The discrepancy between theory and observation is explained by the fact that the 
atmosphere is not totally opaque to long-wave radiation, neither is it completely transparent 
to short wave radiation. Moreover, approximating the atmosphere by one homogeneous 
layer is obviously not accurate. Nevertheless, we can conclude that the presence of the 
atmosphere raises the temperature at the Earth’s surface considerably. This effect is referred 
to as the “greenhouse effect”. 
 We assume now that the atmosphere is “semi-grey”, i.e. it absorbs a constant fraction $ 
of the long-wave radiation, but is still transparent to Solar radiation59. In other words, the 
Earth’s surface emits energy at a rate U, given by  
 

! 

U ="TS
4 ,           (2.7) 

 
of which a fraction (1-$) escapes to space. According to Kirchhoff’s law the absorptance 
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With $=0.78 (i.e. 22 % of the terrestrial radiation escapes to space) and again #p=0.3, we 
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
result for such a crude model. However, although the estimate of the average planetary 
albedo (#=0.3) is probably not far from reality, the estimate of the average emissivity 
($=0.78) is probably an under-estimate. It appears that actually only 10% of the terrestrial 
radiation (radiation emitted by the Earth’s surface) escapes directly to space. Suppose that 
$=0.9. We now obtain TS=296 K and TA=249 K. Thus, we have a better estimate of the 
temperature “halfway” with respect to the mass of the atmosphere (at 500 hPa), but a worse 
estimate of the surface temperature.  
 The best measure of the “strength of greenhouse effect” is the so-called back-
radiation, i.e. the downward emission of radiation from the atmosphere to the Earth’s 
surface, which, within the context of the one-layer model, is 
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As $ increases the downward radiation increases, thereby increasing the temperature of the 
Earth’s surface. According to the above equation, the atmophere may radiate as much 
energy to the surface as the Sun. In reality this theoretical limit may even be exceeded 
(section 2.5). 
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0 1013 288 287  5.9 
1 899 282 290 0.011 4.2 
2 795 275 294 0.011 2.9 
3 701 269 297 0.011 1.8 
4 616 262 301 0.011 1.1 
5 540 256 305 0.011 0.64 
6 472 249 309 0.011 0.38 
7 411 243 313 0.011 0.21 
8 356 236 317 0.012 0.12 
9 307 230 322 0.012 0.046 
10 264 223 326 0.012 0.018 
15 120 217 397 0.019 0.00072 
20 54.7 217 497 0.021 0.00044 
30 11.7 227 808 0.021 0.00038 
40 2.8 251 1349 0.022 0.000067 
50 0.76 271 2107 0.021 0.000012 
60 0.20 245 2789 0.016  
70 0.05 217 3670 0.017  

 
TABLE 2.1. The “1976 US standard atmosphere” is representative for the observed average temperature 
distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
column. The value of N at 1 km height is representative for the layer between the altitudes of 0 and 1 km, etc. 
The water vapour density is taken from Kuo-Nan Liou, 1992: Radiation and Cloud Processes in the 
Atmosphere. Oxford University Press. 504 pp. 
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
result for such a crude model. However, although the estimate of the average planetary 
albedo (#=0.3) is probably not far from reality, the estimate of the average emissivity 
($=0.78) is probably an under-estimate. It appears that actually only 10% of the terrestrial 
radiation (radiation emitted by the Earth’s surface) escapes directly to space. Suppose that 
$=0.9. We now obtain TS=296 K and TA=249 K. Thus, we have a better estimate of the 
temperature “halfway” with respect to the mass of the atmosphere (at 500 hPa), but a worse 
estimate of the surface temperature.  
 The best measure of the “strength of greenhouse effect” is the so-called back-
radiation, i.e. the downward emission of radiation from the atmosphere to the Earth’s 
surface, which, within the context of the one-layer model, is 
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As $ increases the downward radiation increases, thereby increasing the temperature of the 
Earth’s surface. According to the above equation, the atmophere may radiate as much 
energy to the surface as the Sun. In reality this theoretical limit may even be exceeded 
(section 2.5). 
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TABLE 2.1. The “1976 US standard atmosphere” is representative for the observed average temperature 
distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
column. The value of N at 1 km height is representative for the layer between the altitudes of 0 and 1 km, etc. 
The water vapour density is taken from Kuo-Nan Liou, 1992: Radiation and Cloud Processes in the 
Atmosphere. Oxford University Press. 504 pp. 
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
result for such a crude model. However, although the estimate of the average planetary 
albedo (#=0.3) is probably not far from reality, the estimate of the average emissivity 
($=0.78) is probably an under-estimate. It appears that actually only 10% of the terrestrial 
radiation (radiation emitted by the Earth’s surface) escapes directly to space. Suppose that 
$=0.9. We now obtain TS=296 K and TA=249 K. Thus, we have a better estimate of the 
temperature “halfway” with respect to the mass of the atmosphere (at 500 hPa), but a worse 
estimate of the surface temperature.  
 The best measure of the “strength of greenhouse effect” is the so-called back-
radiation, i.e. the downward emission of radiation from the atmosphere to the Earth’s 
surface, which, within the context of the one-layer model, is 
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As $ increases the downward radiation increases, thereby increasing the temperature of the 
Earth’s surface. According to the above equation, the atmophere may radiate as much 
energy to the surface as the Sun. In reality this theoretical limit may even be exceeded 
(section 2.5). 
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3 701 269 297 0.011 1.8 
4 616 262 301 0.011 1.1 
5 540 256 305 0.011 0.64 
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7 411 243 313 0.011 0.21 
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40 2.8 251 1349 0.022 0.000067 
50 0.76 271 2107 0.021 0.000012 
60 0.20 245 2789 0.016  
70 0.05 217 3670 0.017  

 
TABLE 2.1. The “1976 US standard atmosphere” is representative for the observed average temperature 
distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
column. The value of N at 1 km height is representative for the layer between the altitudes of 0 and 1 km, etc. 
The water vapour density is taken from Kuo-Nan Liou, 1992: Radiation and Cloud Processes in the 
Atmosphere. Oxford University Press. 504 pp. 
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Since TE=255 K, TS=303 K. This value is considerably higher than observed (288 K).  
 The discrepancy between theory and observation is explained by the fact that the 
atmosphere is not totally opaque to long-wave radiation, neither is it completely transparent 
to short wave radiation. Moreover, approximating the atmosphere by one homogeneous 
layer is obviously not accurate. Nevertheless, we can conclude that the presence of the 
atmosphere raises the temperature at the Earth’s surface considerably. This effect is referred 
to as the “greenhouse effect”. 
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With $=0.78 (i.e. 22 % of the terrestrial radiation escapes to space) and again #p=0.3, we 
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
result for such a crude model. However, although the estimate of the average planetary 
albedo (#=0.3) is probably not far from reality, the estimate of the average emissivity 
($=0.78) is probably an under-estimate. It appears that actually only 10% of the terrestrial 
radiation (radiation emitted by the Earth’s surface) escapes directly to space. Suppose that 
$=0.9. We now obtain TS=296 K and TA=249 K. Thus, we have a better estimate of the 
temperature “halfway” with respect to the mass of the atmosphere (at 500 hPa), but a worse 
estimate of the surface temperature.  
 The best measure of the “strength of greenhouse effect” is the so-called back-
radiation, i.e. the downward emission of radiation from the atmosphere to the Earth’s 
surface, which, within the context of the one-layer model, is 
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As $ increases the downward radiation increases, thereby increasing the temperature of the 
Earth’s surface. According to the above equation, the atmophere may radiate as much 
energy to the surface as the Sun. In reality this theoretical limit may even be exceeded 
(section 2.5). 
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40 2.8 251 1349 0.022 0.000067 
50 0.76 271 2107 0.021 0.000012 
60 0.20 245 2789 0.016  
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TABLE 2.1. The “1976 US standard atmosphere” is representative for the observed average temperature 
distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
column. The value of N at 1 km height is representative for the layer between the altitudes of 0 and 1 km, etc. 
The water vapour density is taken from Kuo-Nan Liou, 1992: Radiation and Cloud Processes in the 
Atmosphere. Oxford University Press. 504 pp. 
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
result for such a crude model. However, although the estimate of the average planetary 
albedo (#=0.3) is probably not far from reality, the estimate of the average emissivity 
($=0.78) is probably an under-estimate. It appears that actually only 10% of the terrestrial 
radiation (radiation emitted by the Earth’s surface) escapes directly to space. Suppose that 
$=0.9. We now obtain TS=296 K and TA=249 K. Thus, we have a better estimate of the 
temperature “halfway” with respect to the mass of the atmosphere (at 500 hPa), but a worse 
estimate of the surface temperature.  
 The best measure of the “strength of greenhouse effect” is the so-called back-
radiation, i.e. the downward emission of radiation from the atmosphere to the Earth’s 
surface, which, within the context of the one-layer model, is 
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As $ increases the downward radiation increases, thereby increasing the temperature of the 
Earth’s surface. According to the above equation, the atmophere may radiate as much 
energy to the surface as the Sun. In reality this theoretical limit may even be exceeded 
(section 2.5). 
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TABLE 2.1. The “1976 US standard atmosphere” is representative for the observed average temperature 
distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
column. The value of N at 1 km height is representative for the layer between the altitudes of 0 and 1 km, etc. 
The water vapour density is taken from Kuo-Nan Liou, 1992: Radiation and Cloud Processes in the 
Atmosphere. Oxford University Press. 504 pp. 
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
result for such a crude model. However, although the estimate of the average planetary 
albedo (#=0.3) is probably not far from reality, the estimate of the average emissivity 
($=0.78) is probably an under-estimate. It appears that actually only 10% of the terrestrial 
radiation (radiation emitted by the Earth’s surface) escapes directly to space. Suppose that 
$=0.9. We now obtain TS=296 K and TA=249 K. Thus, we have a better estimate of the 
temperature “halfway” with respect to the mass of the atmosphere (at 500 hPa), but a worse 
estimate of the surface temperature.  
 The best measure of the “strength of greenhouse effect” is the so-called back-
radiation, i.e. the downward emission of radiation from the atmosphere to the Earth’s 
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As $ increases the downward radiation increases, thereby increasing the temperature of the 
Earth’s surface. According to the above equation, the atmophere may radiate as much 
energy to the surface as the Sun. In reality this theoretical limit may even be exceeded 
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TABLE 2.1. The “1976 US standard atmosphere” is representative for the observed average temperature 
distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
column. The value of N at 1 km height is representative for the layer between the altitudes of 0 and 1 km, etc. 
The water vapour density is taken from Kuo-Nan Liou, 1992: Radiation and Cloud Processes in the 
Atmosphere. Oxford University Press. 504 pp. 
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average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
result for such a crude model. However, although the estimate of the average planetary 
albedo (#=0.3) is probably not far from reality, the estimate of the average emissivity 
($=0.78) is probably an under-estimate. It appears that actually only 10% of the terrestrial 
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$=0.9. We now obtain TS=296 K and TA=249 K. Thus, we have a better estimate of the 
temperature “halfway” with respect to the mass of the atmosphere (at 500 hPa), but a worse 
estimate of the surface temperature.  
 The best measure of the “strength of greenhouse effect” is the so-called back-
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Earth’s surface. According to the above equation, the atmophere may radiate as much 
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distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
result for such a crude model. However, although the estimate of the average planetary 
albedo (#=0.3) is probably not far from reality, the estimate of the average emissivity 
($=0.78) is probably an under-estimate. It appears that actually only 10% of the terrestrial 
radiation (radiation emitted by the Earth’s surface) escapes directly to space. Suppose that 
$=0.9. We now obtain TS=296 K and TA=249 K. Thus, we have a better estimate of the 
temperature “halfway” with respect to the mass of the atmosphere (at 500 hPa), but a worse 
estimate of the surface temperature.  
 The best measure of the “strength of greenhouse effect” is the so-called back-
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As $ increases the downward radiation increases, thereby increasing the temperature of the 
Earth’s surface. According to the above equation, the atmophere may radiate as much 
energy to the surface as the Sun. In reality this theoretical limit may even be exceeded 
(section 2.5). 
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TABLE 2.1. The “1976 US standard atmosphere” is representative for the observed average temperature 
distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
column. The value of N at 1 km height is representative for the layer between the altitudes of 0 and 1 km, etc. 
The water vapour density is taken from Kuo-Nan Liou, 1992: Radiation and Cloud Processes in the 
Atmosphere. Oxford University Press. 504 pp. 
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
result for such a crude model. However, although the estimate of the average planetary 
albedo (#=0.3) is probably not far from reality, the estimate of the average emissivity 
($=0.78) is probably an under-estimate. It appears that actually only 10% of the terrestrial 
radiation (radiation emitted by the Earth’s surface) escapes directly to space. Suppose that 
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TABLE 2.1. The “1976 US standard atmosphere” is representative for the observed average temperature 
distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
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4            (2.8) 

 
(upwards and downwards). In a steady state we have  
 

! 

S0
4
1"#( ) + B =U ,         (2.9a) 

 

! 

2B = "U .           (2.9b) 
 
This leads to 
 

! 

TS =
2

2 "#
$ 
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TE  .       (2.10) 

 
With $=0.78 (i.e. 22 % of the terrestrial radiation escapes to space) and again #p=0.3, we 
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obtain TS=288 K and TA=242 K. The computed surface temperature is close to the observed 
average temperature of the Earth’s surface (see Table 2.1). The computed atmospheric 
temperature is representative for the observed temperature at 411 hPa. This is not a bad 
result for such a crude model. However, although the estimate of the average planetary 
albedo (#=0.3) is probably not far from reality, the estimate of the average emissivity 
($=0.78) is probably an under-estimate. It appears that actually only 10% of the terrestrial 
radiation (radiation emitted by the Earth’s surface) escapes directly to space. Suppose that 
$=0.9. We now obtain TS=296 K and TA=249 K. Thus, we have a better estimate of the 
temperature “halfway” with respect to the mass of the atmosphere (at 500 hPa), but a worse 
estimate of the surface temperature.  
 The best measure of the “strength of greenhouse effect” is the so-called back-
radiation, i.e. the downward emission of radiation from the atmosphere to the Earth’s 
surface, which, within the context of the one-layer model, is 
 

! 

F" = B = #$TA
4 =

#
2 %#

$TE
4 &

#
2 %#

Q .       (2.11) 

 
As $ increases the downward radiation increases, thereby increasing the temperature of the 
Earth’s surface. According to the above equation, the atmophere may radiate as much 
energy to the surface as the Sun. In reality this theoretical limit may even be exceeded 
(section 2.5). 
 

Altitude 
[km] 

Pressure 
[hPa] 

Temperature 
[K] 

Potential 
temperature 
[K] 

Brunt-
Väisälä 
frequency 
[s-1] 

water vapour 
density 
[g m-3] 

0 1013 288 287  5.9 
1 899 282 290 0.011 4.2 
2 795 275 294 0.011 2.9 
3 701 269 297 0.011 1.8 
4 616 262 301 0.011 1.1 
5 540 256 305 0.011 0.64 
6 472 249 309 0.011 0.38 
7 411 243 313 0.011 0.21 
8 356 236 317 0.012 0.12 
9 307 230 322 0.012 0.046 
10 264 223 326 0.012 0.018 
15 120 217 397 0.019 0.00072 
20 54.7 217 497 0.021 0.00044 
30 11.7 227 808 0.021 0.00038 
40 2.8 251 1349 0.022 0.000067 
50 0.76 271 2107 0.021 0.000012 
60 0.20 245 2789 0.016  
70 0.05 217 3670 0.017  

 
TABLE 2.1. The “1976 US standard atmosphere” is representative for the observed average temperature 
distribution in the Earth’s atmosphere in mid-latitudes. Potential temperature is defined in section 1.9. Brunt-
Väisälä frequency, N, is defined in section 1.15 (see also figure 1.6). The value of N displayed in the table is 
computed from the values of pressure and temperature that are, respectively, displayed in the second and third 
column. The value of N at 1 km height is representative for the layer between the altitudes of 0 and 1 km, etc. 
The water vapour density is taken from Kuo-Nan Liou, 1992: Radiation and Cloud Processes in the 
Atmosphere. Oxford University Press. 504 pp. 

• ε increases à B 
increases à Ts
increases

• The atm may radiate as 
much energy to the 
surface as the Sun

11
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B2-SA-NDT-Earth System

Exercise #1
• Atm of two layers
• Supposing the atm is transparent to shortwave radiation; and 

the atm layers are opaque to longwave radiation (ε1= 
ε2=1).

• Surface is considered as a black body.
• The incoming radiation flux is S0. The planetary albedo is α
a) Write the radiation balance equation at each layer;
b) Calculate surface temperature, and temperature at each 

atmospheric layer 

12

12
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B2-SA-NDT-Earth System

Exercise #2
• Atm of two layers
• Supposing the atm is transparent to shortwave radiation; and 

the emissivity of each layer is ε1 and ε2, respectively.
• Surface is considered as a black body.
• The incoming radiation flux is S0. The planetary albedo is α
a) Write the radiation balance equation at each layer;
b) Calculate surface temperature, and temperature at each 

atmospheric layer 

13
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B2-SA-NDT-Earth System
14

At the surface
At Layer #2
At Layer #1
At TOA?

? the radiation balance equation
? Variables of the model 

? T1<T2<Tg

14
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B2-SA-NDT-Earth System

Vertical profile of Temperature

0,5km

3,0km

Atm. with 2 layers, transparent with shortwave,  opaque with 
OLR (i.e. ε≈1)

Atm. with n layers T4(n)=τTOTAL(n) Te4

σT24 = 2 σT14 = 2 σTe4 T1=Te=255K, T2=303K, Ts=335K

15
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B2-SA-NDT-Earth System

Atm with cloud

16

16
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B2-SA-NDT-Earth System

Atm with cloud

Tg vs. αc
Tg vs. ac
Tg vs. ε

17
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B2-SA-NDT-Earth System

0-D EBM

18

- S: Solar constant, for the Earth, S=1370W/m2

- α: planetary albedo (~0.3)
- σ: Stefan-Boltzman constant (5.6696E-8 W/m2K4).

Practice #3.1

Write a program to:
1. Estimate the incoming 

solar flux for those 
planets 

2. Estimate their 
blackbody equivalent 
temperature

3. Plot: Te versus Solar 
fluxes à comment on 
the obtained results

18
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B2-SA-NDT-Earth System

Given the solar constant of 1368 W/m2, σ=5,67×10-8 W/m2K4 is 
the Stefan-Boltzmann constant. α is the planetary albedo
• Given the outgoing  longwave radiation of the planet by εσTs4, 

where ε is the emissivity of the atmosphere , Ts is the surface 
temperature.                     

1. α=0,32 , write a python program to plot the dependence of Ts
on ε

2. ε=0.66, write a python program to plot the dependence of Ts
on α

3. * Write a python program to plot the dependence of  Ts on 
both α and ε

19

0-D EBM (cont.)Practice #3.2
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