











The Greenhouse Effect In 0-D model (the Earth is considered as one point) → T<sub>E</sub>=255K Case 1: consider the atm with 1 layer, supposing the atm is transparent to shortwave radiation; and opaque to longwave radiation  $\rightarrow \epsilon \approx 1$ Atmospheric Net Solar Ground Radiation Radiation Radiation Write the energy balance equations at:  $(1-\alpha)S_0/4$  $(1-\varepsilon)U$ B → TOA → Atmosphere Atmosphere → Surface Temperature T<sub>A</sub> B U  $(1-\alpha)S_0/4$ Ground, temperature T<sub>S</sub> 6 6







(2.4)

(2.5)

e Earth's surface

















## Practice #3.2 O-D EBM (cont.)

Given the solar constant of 1368 W/m<sup>2</sup>,  $\sigma$ =5,67 × 10<sup>-8</sup> W/m<sup>2</sup>K<sup>4</sup> is the Stefan-Boltzmann constant.  $\alpha$  is the planetary albedo

- Given the outgoing longwave radiation of the planet by  $\epsilon \sigma T_s^4$ , where  $\epsilon$  is the emissivity of the atmosphere ,  $T_s$  is the surface temperature.
- 1.  $\alpha {=} 0{,} 32$  , write a python program to plot the dependence of  $T_s$  on  $\epsilon$
- 2.  $\epsilon{=}0.66,$  write a python program to plot the dependence of  $T_s$  on  $\alpha$
- 3. \* Write a python program to plot the dependence of  $T_s$  on both  $\alpha$  and  $\epsilon$

32-SA-NDT-Earth System