
Practical Work 1: Unit Testing

Huynh Vinh, Nam
huynh-vinh.nam@usth.edu.vn

Kieu Quoc, Viet
kieu-quoc.viet@usth.edu.vn

1 ShoppingCart Class Specification

The ShoppingCart class represents a virtual shopping cart for customers. It
allows users to add items, update quantities, calculate the total price, and more.
In this section, you are expected to develop a robust ShoppingCart class in
Python.

1.1 Attributes

• max quantity: total amount of items that the cart can hold.

• items: A dictionary store item data:

– Keys: Unique item identifiers (product codes, generated automati-
cally as ”ITEM-X” where X is a sequential number).

– Values: Dictionaries containing detailed information about each
item:

∗ name: The name of the item (string).

∗ quantity: The number of items in the cart (int).

∗ price: The price per item (float).

1.2 Methods

• add item(name, quantity, price): Adds a new item to the shopping
cart or updates the quantity of an existing item.

– Parameters:

∗ name: The name of the item (string).

∗ quantity: The number of item to add (int).

∗ price: The price per item (float).

• remove item(name, quantity): Removes a quantity of items (or the
whole item) from the shopping cart if it exists.

1



• update quantity(name, new quantity): Updates the quantity of all the
items in the cart.

– Parameters:

∗ name: The name of the item to update (string).

∗ new quantity: The new quantity to set (int).

• view cart(): Displays the contents of the shopping cart in a formatted
way.

• checkout(): Calculates and returns the total price of all items in the cart.

2 Testing Tasks

In this section, you are required to write test cases using the Python unit testing
framework like unittest or pytest for test execution and reporting.

2.1 Test view cart():

• Test viewing an empty cart.

• Test viewing a cart with multiple items.

• Test the format of the returned string representation.

2.2 Test add item():

• Test adding an existing item to increase its quantity.

• Test adding an item when the cart is full

• Test adding an item with 0 quantity (should not be added).

• Test adding an item with negative price and negative quantity (should
raise an exception).

2.3 Test remove item():

• Test removing an existing item from the cart.

• Test removing a quantity of existing item.

• Test removing an item that doesn’t exist in the cart (should raise an
exception).

2.4 Test checkout():

• Test calculating the total with multiple items of different quantities and
prices.

• Test calculating the total with an empty cart (should return 0).

2


