
Practical Work 2: Integration Test

Huynh Vinh, Nam
huynh-vinh.nam@usth.edu.vn

Kieu Quoc, Viet
kieu-quoc.viet@usth.edu.vn

1 InventorySystem Class Specification

The InventorySystem class models a system for managing and tracking items
in stock. This builds on your solution from Practical Work 1, with the following
modifications for integration between systems.

1.1 Attributes

• Items: A dictionary to store item data:

– Keys: Unique item identifiers (product codes provided by the user).

– Values: Dictionaries containing detailed information about each item:

∗ name: The name of the item (string).

∗ quantity: The current quantity in stock (non-negative) (inte-
ger).

∗ price: The price per item (float).

1.2 Methods

• create item(identifier, name, quantity, price): Creates a new item
to the system.

– Parameters:

∗ identifier: The product code for the item (string).

∗ name: The name of the item (string).

∗ quantity: The initial quantity of the item to add. (integer).

∗ price: The price per item (float).

• display(): Displays the information of all the items in the system (in a
formatted way).

• remove item(identifier): Removes an item from the system.

1

• update item(identifier, **kwargs): Updates specific attributes of an
existing item.

• get item(identifier): Retrieves information for a specific item.

• check availability(identifier, quantity): Checks if requested quan-
tity if available.

– Parameters:

∗ identifier: The product code for the item (string).

∗ quantity: The requested quantity (integer).

1.3 Integration with ShoppingCart

The ShoppingCart class from Practical Work 1 needs to be modified to work
with the InventorySystem. Specifically:

• Initialize ShoppingCart with a reference to an InventorySystem instance

• Modify add item() to check inventory availability before adding items

• Modify remove item() to update inventory when items are removed from
cart

Example relationship between classes:

1 # Example of how the classes should interact

2 inventory = \texttt{InventorySystem }()

3 inventory.create_item("APPLE1", "Apple", 50, 1.25)

4 inventory.create_item("BANANA1", "Banana", 30, 0.75)

5

6 cart = \texttt{ShoppingCart }(inventory , max_quantity =10)

7 # This should check inventory and reduce inventory quantity

8 cart.add_item("APPLE1", 5)

2 Testing Scenarios

In this section, you can still use the Python unit testing framework like unittest
or pytest for integration test. However, you’ll likely need to use mocking li-
braries (like unittest.mock or pytest-integration) to simulate the behavior
of external systems.

2.1 Adding an Item to Cart Updates Inventory

• Test Setup: Initialize both ShoppingCart and InventorySystem with a
sample item.

• Action: Add the item to the shopping cart with a specific quantity.

• Assertion: Verify that:

2

– The item is added to the cart with the correct quantity and price.

– The InventorySystem’s quantity for the item is reduced by the
amount added to the cart.

2.2 Removing an Item from Cart Updates Inventory

• Test Setup: Similar to the previous scenario, but start with the item
already in the cart.

• Action: Remove the item from the shopping cart.

• Assertion: Verify that:

– The item is no longer present in the cart.

– The InventorySystem’s quantity for the item is restored to its orig-
inal value.

2.3 Out-of-Stock Items Cannot Be Added

• Test Setup: Set the quantity of an item in the InventorySystem to 0.

• Action: Attempt to add the item to the cart.

• Assertion: Verify that:

– The item is not added to the cart.

– An appropriate error message or exception is raised (e.g., ”Item out
of stock”).

2.4 Partial Quantity Available

• Test Setup: Set the quantity of an item in the InventorySystem to less
than the requested amount.

• Action: Attempt to add the item to the cart with a quantity greater than
what’s available.

• Assertion: Verify appropriate handling (either adding only available
quantity or rejection).

2.5 Price Changes in Inventory

• Test Setup: Add an item to the cart, then change its price in inventory.

• Action: Add more of the same item to the cart.

• Assertion: Verify consistent pricing behavior (either maintaining original
price or updating to new price).

3

2.6 Checkout Process

• Test Setup: Add multiple items to cart from inventory.

• Action: Call the checkout() method.

• Assertion: Verify that inventory quantities are permanently updated and
cart is emptied.

3 System Integration Design

When implementing the integration between ShoppingCart and InventorySystem,
use the following design pattern:

3.1 Component Relationship

The ShoppingCart and InventorySystem classes should interact as follows:

• ShoppingCart contains a reference to an InventorySystem instance

• ShoppingCart methods check with InventorySystem before performing
operations

• Operations on ShoppingCart trigger corresponding updates in InventorySystem

3.2 Class Relationship Diagram

ShoppingCart InventorySystem

User Interface

uses

Figure 1: Integration between ShoppingCart and InventorySystem

3.3 Implementation Guidelines

• The ShoppingCart should never modify inventory data directly, but should
always call InventorySystem methods.

• Both systems should validate data before performing operations.

4

• Proper error handling should be implemented for cases like out-of-stock
items.

• Design for transactional integrity (e.g., if an operation fails halfway, ensure
data consistency).

5

