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Introduction to Earth System

Dynamics of the atmosphere (cont.)
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Holton J.R. An introduction to Dynamic Meteorology (4th Edition)

Note from 2025: to carefully check: https://rams.atmos.colostate.edu/at540/fall03/fall03Pt4.pdf
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The equa(ons

• The dynamics of the atmosphere à in the principles of 
conserva4on of momentum, mass, and energy
– The Newton’s equa4ons of mo4on
– The equa4on of con4nuity
– The thermodynamic energy equa4on
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• Independent variables: space 
& time coordinates (x,y,z,t)

• Dependent variables: velocity, 
pressure, density, temperature
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The equation of state
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𝑝𝑉 = 𝑛𝑅∗𝑇 (1)

• The ideal gas law: R*: the universal gas constant 
     (=8.314 J/(mol.K))
n: number of moles of gas
T: absolute temperature

• The mean molecular weight of air is 29 à the air parcel’s mass 𝑚 = 𝜌𝑉 = 29×𝑛
• Dividing Eq(1) by the volume V à the equation of state: 

𝑝 = 𝑅𝜌𝑇 R=R*/29=287 J/(mol.K) is the gas 
constant for dry air

Q: Why the mean molecular weight of air is 29?
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The motion equations

• Large scale (e.g. synop4c) mo4on systems in the troposphere:
– Ver4cal scale: H= 10 km
– Horizontal scale: L= 1000 km
– A typical grid-box of an NWP ~ 10 km x 10 km x 100m
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The motion equations
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1. The pressure force per unit mass is:

𝑭" = −
1
𝜌
𝜕𝑝
𝜕𝑥 , −

1
𝜌
𝜕𝑝
𝜕𝑦 , −

1
𝜌
𝜕𝑝
𝜕𝑧 = −

1
𝜌𝛁𝑝

2. The force due to gravity à ver4cally downward (to the earth’s 
center):      𝐠∗ = −𝑔𝐤   (the star on g* will be described later)

3. The force  of fric4on à opposite direc4on to the flow velocity

𝐅# = −𝜅𝐕 where 𝜅 is the friction coefficient, that depend 
on location & could be also on velocity
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The motion equations in an Inertial frame of reference
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• Inertial frame of reference: a frame of reference that is not undergoing any acceleration

𝑑𝐕
𝑑𝑡 = −

1
𝜌𝛁𝑝 + 𝐠

∗ + 𝐅#

𝑑𝜌
𝑑𝑡 + 𝜌𝛁. 𝐕 = 0

• Recall the con[nuity equa[on in the Lagrangian form

• The basic equations of motion according to the 2nd Newton’s law (a=F/m):
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The motion equations in an Inertial frame of reference
𝑑𝐕
𝑑𝑡 = −

1
𝜌𝛁𝑝 + 𝐠

∗ + 𝐅#

𝑑𝜌
𝑑𝑡 + 𝜌𝛁. 𝐕 = 0

If the fluid is
• incompressible
• inviscid (i.e. no fric[on) 
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∗

𝛁. 𝐕 = 0

Written in cartesian coordinates, we get: 
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𝜕
𝜕𝑧 𝑤 = −

1
𝜌
𝜕𝜌
𝜕𝑧 − 𝑔

𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦 +

𝜕𝑤
𝜕𝑧 = 0
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The mo(on equa(ons in a rota(ng coordinate frame
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Theorem:   A is a vector fixed in a rotating frame with the constant angular velocity 𝛺. 
We have: 

𝑑𝐀
𝑑𝑡 = 𝛀×𝐀

Exercise #1: prove the above theorem

x

z

y

A

𝛀

θ

Vector A in the rotating 
coordinate frame

Asinθ

Asinθ

𝛺∆𝑡
∆A

Solu/on
• AΩ The projec[on of A on the 𝛀-axis does not change
• AXY	The projec[on of  A on the X-Y plane is Asinθ, which  

does not change in magnitude, but changes in direc[on
• ∆A is on the the X-Y plane à perpendicular to 𝛀;
∆A is perpendicular to 𝐀
→ ∆A=∆An

where n is a unit vector perpendicular to both Ω and A

𝑑𝐀
𝑑𝑡 =

𝑑𝐀Ω
𝑑𝑡 +

𝑑𝐀XY
𝑑𝑡 =

𝑑𝐀XY
𝑑𝑡 ≈ lim

∆%→'

∆𝐀
∆t = Asin𝜃Ω𝐧 = 𝛀×𝐀à
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The motion equations in a rotating coordinate frame
• If A is not fixed in the rota[ng frame

• There is the following rela[onship between the rate of change of A in the absolute 
frame and the rota[ng frame:

𝑑𝐀
𝑑𝑡 (

=
𝑑𝐀
𝑑𝑡 )

+ 𝛀×𝐀

Exercise #2: Prove the above relationship

Hint: Consider a cartesian coordinates in the rotating frame 

9
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The motion equations in a rotating coordinate frame
𝑑𝐀
𝑑𝑡 (

=
𝑑𝐀
𝑑𝑡 )

+ 𝛀×𝐀

Applica/ons:

• If A is the posi[on vector r à *𝐫
*, (

= 𝐕(  & *𝐫
*, )

= 𝐕)

à 𝐕( = 𝐕) + 𝛀×𝐫

Inertial 
(absolute) 

velocity Relative velocity
Velocity of the frame

Exercise #3: 
1. What is the absolute velocity of USTH (consider as a point, lat=21.05ºN, 

lon=105.81ºE)? 
2. Prove that the value of the velocity due to the earth’s rotation at 60ºN is half of that 

at the equator
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The motion equations in a rotating coordinate frame

Relative acceleration

𝑑𝐀
𝑑𝑡 (

=
𝑑𝐀
𝑑𝑡 )

+ 𝛀×𝐀 𝐕( = 𝐕) + 𝛀×𝐫
• From

&

• Let A be 𝐕(

à 𝑑𝐕(
𝑑𝑡 (

=
𝑑𝐕)
𝑑𝑡 )

+ 2𝛀×𝐕) + 𝛀×(𝛀×𝐫)

à 
𝑑𝐕(
𝑑𝑡 (

=
𝑑𝐕)
𝑑𝑡 )

+
𝑑𝛀×𝐫
𝑑𝑡 )

+ 𝛀×𝐕) + 𝛀×(𝛀×𝐫)

Centrifugal acceleration

The centrifugal acceleration depends only on position à combine with the 
gravitational acceleration, we get an apparent gravitational acceleration

𝐠 = 𝐠∗ − 𝛀×𝛀×𝐫
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Exercise #4
• Estimate the centrifugal acceleration at the Equator & compare it to the  

gravitational acceleration value. 
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Results: the centrifugal acceleration ~0.3% the gravitational acceleration

à The flattened form of the earth
à You lose weight when you travel to the lower latitude J 
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The Coriolis accelera(on

13

𝑑𝐕(
𝑑𝑡 (

=
𝑑𝐕)
𝑑𝑡 )

+ 2𝛀×𝐕) + 𝛀×(𝛀×𝐫)

Coriolis acceleration

• The Coriolis acceleration: 
• No component in the direction of motion
• Varies linearly with the motion speed
• Perpendicular to the velocity 
• An important factor in all large-scale weather systems
• When the air is moving à deflect the direction à explain the rotational character 

of the atmospheric flow

Exercise #5: 

Estimate the deflection of a tropical cyclone at 30ºN, travelling for 1 hours at the 
speed of 100 km/h

13

Motion equations in component form
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𝑑𝐕(
𝑑𝑡 (

= −
1
𝜌𝛁𝑝 + 𝐠

∗ + 𝐅#

𝑑𝐕(
𝑑𝑡 (

=
𝑑𝐕)
𝑑𝑡 )

+ 2𝛀×𝐕) + 𝛀×(𝛀×𝐫)

In the inertial frame

• We assume there is no friction for instance à the 
motion equation in the rotating frame (V= 𝐕)) is:

𝑑𝐕
𝑑𝑡 + 2𝛀×𝐕 +

1
𝜌𝛁p − 𝐠 = 0

•  We will write the above equation in the local cartesian 
coordinates (x,y,z)  

𝐕 = 𝑢, 𝑣, 𝑤

𝛁p =
𝜕𝑝
𝜕𝑥 ,

𝜕𝑝
𝜕𝑦 ,

𝜕𝑝
𝜕𝑧

𝛀

𝜙

z

y

𝛀 = 0, Ωcos∅, Ωsin∅

? 2𝛀×𝐕 = 2wΩcos∅ − 2vΩsin∅, 2uΩsin∅, −2uΩcos∅
• Assuming w is much smaller than u, v à neglect the term 2wΩcos∅
• Let f= 2Ωsin∅ à is called the Coriolis parameter
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Motion equations in component form

• The horizontal components of 
the equation of motion 
become:

𝑑𝐕
𝑑𝑡 + 2𝛀×𝐕 +

1
𝜌𝛁p − 𝐠 = 0

2𝛀×𝐕 ≈ −fv, fu, −2uΩcos∅

𝑑𝑢
𝑑𝑡 − 𝑓𝑣 +

1
𝜌
𝜕𝑝
𝜕𝑥 = 0

𝑑𝑣
𝑑𝑡 + 𝑓𝑢 +

1
𝜌
𝜕𝑝
𝜕𝑦 = 0

• The vertical component of the 
equation of motion becomes:

𝑑𝑤
𝑑𝑡 − 2uΩcos∅ +

1
𝜌
𝜕𝑝
𝜕𝑧 + g = 0

• In case there is no motion 
     à the hydrostatic equation

• The steady-state force balance between 
the Coriolis force & the pressure 
gradient force à geostrophic balance

• Geostrophic balance is the approximate 
state of most large-scale flows in the 
ocean and atmosphere

−𝑓𝑣 +
1
𝜌
𝜕𝑝
𝜕𝑥 = 0

𝑓𝑢 +
1
𝜌
𝜕𝑝
𝜕𝑦 = 0
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1. Given the earth divided into a horizontal mesh of 360 x 180 points

2. Randomly generate pressure at 5km height in the atmosphere, within the 
values ranging from 500hPa to 600hPa

3. Use differences between adjacent cells to es[mate pressure gradients.

4. Compute the Coriolis parameter at each point, plot the values (f= 2Ωsin∅)

5. Assuming having the geostrophic equa[ons, equal density, please compute 
horizontal wind components.

6. Plot wind vectors

Practice #6 with Python: Computing wind speed in a 
geostrophic balance

−𝑓𝑣 +
1
𝜌
𝜕𝑝
𝜕𝑥 = 0

𝑓𝑢 +
1
𝜌
𝜕𝑝
𝜕𝑦 = 0

Bonus: download the NCEP reanalysis monthly 
pressure at the tropopause level 
https://downloads.psl.noaa.gov/Datasets/ncep.rea
nalysis/Monthlies/tropopause/pres.mon.mean.nc
and compute horizontal wind speed
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https://downloads.psl.noaa.gov/Datasets/ncep.reanalysis/Monthlies/tropopause/pres.mon.mean.nc
https://downloads.psl.noaa.gov/Datasets/ncep.reanalysis/Monthlies/tropopause/pres.mon.mean.nc

