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Introduction to Earth System

Dynamics of the atmosphere (cont.)

Note from 2025: to carefully check: https://rams.atmos.colostate.edu/at540/fall03/fall03Pt4.pdf

Holton J.R. An introduction to Dynamic Meteorology (4™ Edition)
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The equations
* The dynamics of the atmosphere = in the principles of

conservation of momentum, mass, and energy

— The Newton’s equations of motion

— The equation of continuity

— The thermodynamic energy equation
ﬂ—(f+ utan¢)v+l67p+Fr =0
dt a p ox
dv utang.  1dp * Independent variables: space
—+(f+—u+——+F, =0 . .
dt pay & time coordinates (x,y,z,t)
p=RpT * Dependent variables: velocity,
‘Zl+gp=0 pressure, density, temperature
Z
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The equation of state

R*: the universal gas constant
(=8.314 J/(mol.K))

n: number of moles of gas

T: absolute temperature

* Theideal gas law:
pV =nR'T (1)

* The mean molecular weight of air is 29 > the air parcel’s massm = pV = 29xn
+ Dividing Eq(1) by the volume V - the equation of state:

p = RpT R=R*/29=287 J/(mol.K) is the gas
constant for dry air

Q: Why the mean molecular weight of air is 29?

The motion equations

* Large scale (e.g. synoptic) motion systems in the troposphere:

— Vertical scale: H= 10 km
— Horizontal scale: L= 1000 km
— A typical grid-box of an NWP ~ 10 km x 10 km x 100m
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The motion equations

1. The pressure force per unit mass is:

ldp 10p 10p
- 7 -—tw

1
p

2. The force due to gravity = vertically downward (to the earth’s
center): g" = —gk (the star on g* will be described later)

3. The force of friction = opposite direction to the flow velocity

Fr = —kV where k is the friction coefficient, that depend
on location & could be also on velocity

The motion equations in an Inertial frame of reference

* Inertial frame of reference: a frame of reference that is not undergoing any acceleration

* The basic equations of motion according to the 2" Newton’s law (a=F/m):

dv
dt

1
:_;Vp+g*+Ff

* Recall the continuity equation in the Lagrangian form

@+ V.V=0
ac PV T

5/20/25



The motion equations in an Inertial frame of reference

dv 1 Vo 48" +F dav 1
& lvp+g .
T 5 'f Iftheﬂwd is —=—-VUp+g"
* incompressible — dt P
d o -
d_ﬁ: + UV =0 inviscid (i.e. no friction) VV=0

Written in cartesian coordinates, we get:

(6+ 6+ 6+ 6) 1dp
ot " Max T Vay T Wa T Thox

<6+ 6+ 6+ 6> 1adp
ac T Yox Ty T Waz)V T T oy

(6+ 6+ 6+ 6) _ 1dp
ot "o T Vay TV a) W T Tpaz 9

u + 6v+ ow
Ox 0dy 0z

The motion equations in a rotating coordinate frame

Theorem: A is a vector fixed in a rotating frame with the constant angular velocity 2.
We have:

Exercise #1: prove the above theorem

Solution
e Aq The projection of A on the Q-axis does not change
* AxyThe projection of A on the X-Y plane is AsinB, which

does not change in magnitude, but changes in direction X Vector A in the rotating
* AAis on the the X-Y plane = perpendicular to Q; coordinate frame
AA is perpendicular to A
— AA=AAn
where n is a unit vector perpendicular to both Q and A Asin® AA
NAt
dA _ Ao DA dBw i 2R asingon = axa
dt dt dt dt At-0 At Asin®
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The motion equations in a rotating coordinate frame

* If Alis not fixed in the rotating frame

There is the following relationship between the rate of change of A in the absolute
frame and the rotating frame:

(dA) _ (dA) +OxXA
dt/; \dt/g

Exercise #2: Prove the above relationship

Hint: Consider a cartesian coordinates in the rotating frame

The motion equations in a rotating coordinate frame

(dA) _(dA) + OxA
dt [_ dt/r

Applications:

* If Ais the position vector r > (Z—;)I =V & (d—r)R = VR

> Vi=Vp+axr

i ||

(absolute) Velocity of the frame
velocity Relative velocity
Exercise #3:

1. What is the absolute velocity of USTH (consider as a point, lat=21.052N,
lon=105.819E)?

2. Prove that the value of the velocity due to the earth’s rotation at 602N is half of that
at the equator
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The motion equations in a rotating coordinate frame

Relative acceleration

" From (dA) (dA>-+QxA & | Vi=Vg+0x
—_— = |— = r
dt);  \dt/gr IR

e LetAbeV;

> (dvl) —(dVR) +<dﬂxr) + QOxVg + QX (O
dt I_ dt /r dt /R R (@xr)
> dVI) _ (dVR)
(dt T R+29><VR-|[Q><(Q><r)

|

Centrifugal acceleration

The centrifugal acceleration depends only on position = combine with the
gravitational acceleration, we get an apparent gravitational acceleration

g=g" — axaxr
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Exercise #4

* Estimate the centrifugal acceleration at the Equator & compare it to the
gravitational acceleration value.

Results: the centrifugal acceleration ~0.3% the gravitational acceleration

- The flattened form of the earth
- You lose weight when you travel to the lower latitude ©
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The Coriolis acceleration

av, av,
(—‘) = (—R) + 2QxVg + QX (QXT)
1 R

dt dt
\_Y_)

Coriolis acceleration

* The Coriolis acceleration:
* No component in the direction of motion
* Varies linearly with the motion speed
* Perpendicular to the velocity
* Animportant factor in all large-scale weather systems
*  When the air is moving > deflect the direction = explain the rotational character

of the atmospheric flow

Exercise #5:

Estimate the deflection of a tropical cyclone at 302N, travelling for 1 hours at the
speed of 100 km/h
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Motion equations in component form

(dvl) g In the inertial f
)" 5 p+g ' n the inertial frame
(dV‘> —(dVR) + 20X Vg + QX (QX

dt 1_ dt /R R (@)

We assume there is no friction for instance = the
motion equation in the rotating frame (V= Vg) is:

dV+ZQ><V+1V =0
- SV -g=

We will write the above equation in the local cartesian
coordinates (x,y,z)

V=(uvw)
_ (ap dp 6p>
P=1ax dy’ 0z
Q = (0, Qcos®, Qsin®d)
?20xV  =(2wQcos® — 2vQsin®, 2uf)sin®, —2ucosd)

e Assuming w is much smaller than u, v > neglect the term 2w{Q.cos®
e Letf=20sin® - is called the Coriolis parameter
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Motion equations in component form

Vo 2axv+ iy =0
= S -g=

20XV ~ (—fv, fu, ~2uQcosp) |

* The horizontal components of

the equation of motion * The steady-state force balance between
become: the Coriolis force & the pressure
du 1ap gradient force = geostrophic balance
——fr+-——=0 * Geostrophic balance is the approximate
dt pox state of most large-scale flows in the
dv 10 ocean and atmosphere
—+ fu+- . 0 P
dt pad 10dp
—fv+- a— =0
* The vertical component of the pox
; ; . 10
equation of motion becomes: fu+ 10p -0
pay
W pucoss + P g =0
de NPT, T 8T

* In case there is no motion

- the hydrostatic equation .
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Practice #6 with Python: Computing wind speed in a
geostrophic balance
1. Given the earth divided into a horizontal mesh of 360 x 180 points
2. Randomly generate pressure at 5km height in the atmosphere, within the
values ranging from 500hPa to 600hPa
3. Use differences between adjacent cells to estimate pressure gradients.
4. Compute the Coriolis parameter at each point, plot the values (f= 2Qsin®)
5. Assuming having the geostrophic equations, equal density, please compute
horizontal wind components.
6. Plot wind vectors 10p
Bonus: download the NCEP reanalysis monthly —fv+ l_?a =0
pressure at the tropopause level
https://downloads.psl.noaa.qgov/Datasets/ncep.rea 1ap
nalysis/Monthlies/tropopause/pres.mon.mean.nc fu+ =3y = 0
and compute horizontal wind speed poy
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https://downloads.psl.noaa.gov/Datasets/ncep.reanalysis/Monthlies/tropopause/pres.mon.mean.nc
https://downloads.psl.noaa.gov/Datasets/ncep.reanalysis/Monthlies/tropopause/pres.mon.mean.nc

