

Past and Current altimeter satellites				
Satellite SKYLAB GEOS-3 SEASAT GEOSAT ERS-1 ERS-2 T/P GFO JASON ENVISAT	Years Or 1972 1975-1978 1978 1985-1990 1991-1996 1995-2006 1992-2005 2000- 2001- 2002-	ganisation NASA NASA US Navy ESA ESA NASA/CNES US Navy NASA/CNES ESA	Accuracy 20 m 3 m 2 m 30 cm 4-10 cm 4 cm 2 3 cm 2 3 cm 2 3 cm 2 3 cm	<image/> <image/>

Solution #1	https://www.star.nesdis.noaa.gov/socd/ lsa/SeaLevelRise/slr/slr_sla_gbl_keep _ref_90.csv		
import numpy as np import matplotlib.pyplot as plt data=np.genfromtxt("slr_sla_gbl_keep_txj1j2_90.csv",delimiter=',',comments='#') time=data[:,0] topex=data[:,1] jason1=data[:,2] jason2=data[:,3] jason3=data[:,4] plt.plot(time,topex,lw=3,label='Topex/Poseidon') plt.plot(time,jason1,lw=3,label='Jason-1') plt.plot(time,jason2,lw=3,label='Jason-2') plt.plot(time,jason3,lw=3,label='Jason-3') plt.legend(loc='upper left') plt.ylabel('Sea level rise (mm)',fontsize=14) plt.title('Global mean sea level',fontsize=16)			
	<pre>import pandas as pd df =pd.read_csv(file,delimiter=',')</pre>		

import numpy as np
import matplotlib.pyplot as plt
data=np.genfromtxt("slr_sla_gbl_keep_txj1j2_90.csv",delimiter=',',comments='#')
time=data[:,0]
topex=data[:,1]
jason1=data[:,2]
jason2=data[:,3]
jason3=data[:,4]
to deal with NaN values
ttp=np.delete(time,np.argwhere(np.isnan(topex)))
tp=np.delete(topex,np.argwhere(np.isnan(topex)))
tjs1=np.delete(time,np.argwhere(np.isnan(jason1)))
js1=np.delete(jason1,np.argwhere(np.isnan(jason1)))
tjs2=np.delete(time,np.argwhere(np.isnan(jason2)))
js2=np.delete(jason2,np.argwhere(np.isnan(jason2)))
tjs3=np.delete(time,np.argwhere(np.isnan(jason3)))
js3=np.delete(jason3,np.argwhere(np.isnan(jason3)))
plt.plot(ttp,tp,lw=3,label='Topex/Poseidon')
plt.plot(tjs1,js1,lw=3,label='Jason-1')
plt.plot(tjs2,js2,lw=3,label='Jason-2')
plt.plot(tjs3,js3,lw=3,label='Jason-3')
plt.legend(loc='upper left')
plt.ylabel('Sea level rise (mm)',fontsize=14)
plt.title('Global mean sea level',fontsize=16)

import numpy as np import netCDF4 as nc from netCDF4 import Dataset # open a netcdf file file='sst.mnmean.nc' fh = Dataset(file, 'r') # Dataset is the class behavior to open the netCDF file # fh means the file handle of the open netCDF file # print fh format print fh.file_format # print info about dimensions print fh.dimensions.keys() print fh.dimensions['time'] # print info about variables print fh.variables.keys() # print attributes print fh.Conventions for attr in fh.ncattrs(): print attr, '=',getattr(fh,attr) # Extract fh from NetCDF file lat = fh.variables['lat'][:] # extract/copy the fh lon = fh.variables['lon'][:] time = fh.variables['time'][:] d times=nc.num2date(fh.variables['time'][:],fh.variables['time'].units) sst = fh.variables['sst'][:] # shape is time, lat, lon as shown above sst_units=fh.variables['sst'].units fh.close()

