VIETNAM FRANCE UNIVERSITY

Web Application Development

Node.js Fundamentals

KIEU Quoc Viet HUYNH Vinh Nam

Information and Communication Technology Laboratory (ICTLab),
University of Science and Technology of Hanoi

Hanoi, Sept 2024

. e e

Table of Contents

@ Introduction

© Setup

© Core Concepts
@ Asynchronous + Callbacks
© Basic Example

@ Conclusion

. e Menh Gpaerl D)5

Introduction
00000000

Node.js Fundamentals

Server-side Client-side
) Static resources: — — e E:T i —
Files . CcsS Web Server GET Request Browser
- Javascript
+ Images HTTP Response
+ other files @ :
|
' Request data: @ @
|« URLencoding HTML
+ GET/POST data css
HTML + Cookies JavaScript
Templates g
Web HTML
Database [Data | Application

. e e

Introduction
0e000000

What is Node.js?

o Definition:

@ Node.js is a JavaScript runtime built on
Chrome’s V8 engine that allows JavaScript to
be executed on the server.

@ Enables server-side programming with

JavaScript. n Q
u@dc

o Key Points:

@ Uses non-blocking, event-driven architecture.

@ Primarily used for building scalable and fast net-
work applications.

. e Y

Introduction
[e]e] lelelele]e]

What is Node.js? (cont.)

o Why is it important?:

@ JavaScript can now be used end-to-end (front-end and back-end), reducing the need
for multiple programming languages across an application.

. e Y

Introduction
[e]e]e] lelelele]

Node.js Architecture

o Single-threaded, Event-Driven:

@ Node.js operates on a single thread using the event loop to handle multiple connec-
tions concurrently.

@ Unlike traditional multithreaded servers, Node.js is non-blocking, allowing it to effi-
ciently manage multiple requests without creating new threads for each.

o Event Loop:
@ Explain the event loop: The core of Node.js' non-blocking architecture.

@ Handles I/O operations asynchronously, queuing up operations and processing them
once they're complete.

. e Y

Introduction
[e]e]e]e] Telele]

Node.js Architecture (cont.)

Parsing
Node.js environment

n ‘ d c (Abstract’:i:tax Tree)
@ Node.js uses @ ‘ Ignition
Google's Vs - V—»

JavaScript en-
‘ Turbofan

«I

e V8 Engine:

gine to convert Chrome V8 engine

JavaScript code Machine Code
into machine JS Source code ‘

code. Code runs on the CPU

. e R

Introduction
[e]e]e]ele] lele]

Use Cases of Node.js

ChatBots Data Streaming
. . Apps

w @) o— nede —
- Y

s id \ o ®
erver-side]
Queued I/0
proxy Inputs

. e Mok Gpaer B/

Introduction
00000080

Use Cases of Node.js (cont.)

o Real-Time Applications: Suitable for chat applications, online col-
laboration tools, and multiplayer games.

o API Servers: Commonly used to build RESTful APIs and microser-

vices.

o Single-Page Applications (SPAs): Works well with frameworks like
React or Vue.js to handle dynamic content.

e Data Streaming Applications: Ideal for audio/video streaming due
to its event-driven nature.

o loT Applications: Handles large amounts of data from loT devices
efficiently.

. e Y

Introduction
0O000000e

Recap: Why Node.js?

Node.js allows JavaScript to run on the server.

Uses a single-threaded, event-driven architecture to handle multiple
connections concurrently.

Powered by the V8 JavaScript engine for fast execution.

Ideal for real-time, APl-based, and data-heavy applications.

Key takeaway: Node.js excels in non-blocking, asynchronous operations.

Installing Node.js & NPM

Steps to Install:
O Go to https://nodejs.org/ and

download the appropriate installer for n \’@d e

your OS. S

@ Install Node.js along with npm (Node

Package Manager).
© Verify installation:

node -v m

npm -v

Setup

0@0000

Example

Installing Node.js & NPM (cont.)

[&x] Command Prompt X + | v

icrosoft Windows [Version 10.0.22631.4169]

Microsoft Corporation. All rights reserved.

C:\Users\USTH>node -v
v18.12.1

C:\Users\USTH>npm -v
8.19.2

C:\Users\USTH>|

Hanoi, Sept 2024

12/37

Setup
[e]e] lelele)

Setting Up a Basic Node.js Project

Steps to Set Up:

© Create a new project directory:

mkdir nodejs-fundamentals
cd nodejs-fundamentals

@ Initialize the project using npm:

npm init -y

© This creates a package. json file to manage the project.

Setup Ca Example
[e]e]e] lele)

[&s] Command Prompt X + | v

C:\Users\USTH\nodejs—fundamentals>npm init -y
Wrote to C:\Users\USTH\nodejs—fundamentals\package.json:

{
"name": "nodejs—fundamentals",
"versio "1.0.0",
"description": ""

"echo \"Error: no test specified\" && exit 1"
by
"keywords": [],
"authol‘" "n .
"license": "ISC"

14 /37

Setup
[e]e]e]e] o)

Understanding package. json

What is package. json?
@ Contains metadata about your project.
@ Tracks dependencies for libraries and packages.

@ Defines custom scripts (e.g., commands to start a server).

Key Fields:
@ '"name": Name of the project.
@ "version": Current version of the project.
@ "dependencies": Lists installed npm packages.

@ "scripts": Commands such as "start": "node app.js".

Setup s us + Callbacks

[e]e]e]e]e]]

Writing and Running the First Node.js Program

Create a file hello. js:

1 console.log('Hello, World from Node.js!');

Run the script in the terminal:

node hello.js

Output: Hello, World from Node. js!

[»] Command Prompt

C:\Users\USTH\nodejs—fundamentals>node hello.js

Hello, World from Node.js!

Core Concepts
000000

Node.js as a JavaScript Runtime

What is Node.js?

@ Node.js is a JavaScript runtime that allows JS to be executed on the

server-side.
@ Built on Chrome's V8 JavaScript engine.

@ Provides an environment for building network applications, using non-
blocking 1/O operations.

Core Concepts
0@0000

Overview of Modules and require() Function

What are Modules?

@ Modules in Node.js are independent blocks of reusable code.

@ Node.js uses the require() function to load modules.

Example: Loading the £s Module

1 const fs = require('fs');

Built-in Modules: fs, http, url, etc.

Core Concepts
[e]e] Jlelele)

Example: Using the f£s (File System) Module

Reading a File Synchronously:

1 const fs = require('fs');

2 let data = fs.readFileSync('file.txt', 'utf8');
3 console.log(data);

Explanation:

@ fs.readFileSync() reads a file synchronously, blocking execution until reading is complete.

@ console.log() outputs the file content.

Core Concepts
[e]e]e] lele)

Creating Custom Modules

Creating and Exporting a Module:

1 // file: myModule.js

2 module.exports.sayHello = function() {

3 console.log('Hello from myModule!');
4

Importing and Using the Custom Module:

1 const myModule = require('./myModule');
2 myModule.sayHello(); // Outputs: Hello from myModule!

Core Concepts
[e]e]e]e] o)

Event-Driven Architecture in Node.js

libuv

) Node js
Application Bindings
(Node API)
l JavaScriptT

Task
Blocking Queue
ops -, -

; &
b)« @
&

Non-blocking

\ ops Worker
V\ Thread Pool
olling
(e] ueue, efc.)

What is Event-Driven Programming?

@ Node.js uses an event-driven architecture, where actions trigger events.

@ The Event Loop processes events asynchronously without blocking.

Example: Using EventEmitter

Creating an Event Listener:

1 const EventEmitter = require('events');
2 const emitter = new EventEmitter();

3

4 // Register a listener

5 emitter.on('event', () => {

6 console.log('An event occurred!');
7 b

8

9 // Emit the event

10 emitter.emit('event'); // Outputs: An event occurred!
Explanation:

@ emitter.on() registers an event listener.

@ emitter.emit() triggers the event.

Asynchronous + Callbacks
000000

Blocking vs Non-Blocking 1/0O

Blocking 1/0:
@ Operations execute in sequence, one after the other.

@ Blocks further execution until the current operation is complete.

Non-Blocking 1/0:
@ Operations can be initiated without waiting for the previous operation to complete.

@ Node.js excels in handling non-blocking, asynchronous operations.

Asynchronous + Callbacks
(o] lelele]e]e]

Example of Blocking Code

Synchronous File Reading:

1 const fs = require('fs');

2

3 let data = fs.readFileSync('file.txt');
4 console.log(data) ;

5 console.log('File reading complete.');

Output Order:

@ File content is printed first.

@ "File reading complete” is printed only after file is fully read.

Asynchronous + Callbacks
[e]e] lelele]e]

Example of Non-Blocking Code

Asynchronous File Reading:

1 const fs = require('fs');

2
3 fs.readFile('file.txt', (err, data) => {
4 if (err) throw err;

5 console.log(data);

6 1);

7 console.log('File reading initiated.');

Output Order:

@ "File reading initiated” is printed first.

@ File content is printed later when reading is complete.

Asynchronous + Callbacks
[e]e]e] lele]e]

What are Callbacks?

Callback Syntax:

1 function fetchData(callback) {

// Simulate async operation

Definition:

N

. . 3 setTimeout (() => {
@ A callback is a function
4 console.log('Data fetched!');
passed as an argument
. 5 callback();
to another function.
6 }, 1000);
7 }

@ It is executed after

an asynchronous oper- o fetchData(() => {

10 console.log('Callback executed.');

1 3;

ation completes.

Asynchronous + Callbacks
[ee]ele] Te]e]

Example: Callback Function

Asynchronous Operation with Callback:

1 function doSomething(callback) {

2 console.log('Doing something...');
3 callback();
4}

=]

function onComplete() {
console.log('Task complete.');

® 3

10 doSomething(onComplete); // Outputs: Doing something... Task complete.

Asynchronous + Callbacks
0O0000e0

Error Handling in Callbacks

Handling Errors in Asynchronous Functions:

1 fs.readFile('file.txt', (err, data) => {

2 if (err) {

3 console.error('Error reading file:', err);
4 return;

5 }

6 console.log(data) ;

7}

Explanation:

@ Check if err exists before proceeding.

@ Use return to stop further execution if an error occurs.

Asynchronous + Callbacks
0O00000e

Recap of Asynchronous Programming

Key Takeaways:
@ Node.js uses non-blocking 1/O operations to handle multiple requests concurrently.

@ Callbacks are functions passed to asynchronous operations, executed when the task

is complete.

@ Proper error handling in callbacks is crucial for robust code.

Basic Example
@000

Introducing the HT TP Module

The HTTP Module in Node.js:
@ The built-in http module allows Node.js to create a basic web server.
@ Provides functionality for handling HTTP requests and responses.

@ No need for external libraries—just import and use.

Key Features:
@ Create an HTTP server with http.createServer().

@ Listen for requests on a specific port.

Basic Example
[e] lele}

Code Example: Basic HTTP Server in Node.js

Example Code:

const http = require('http');

const server = http.createServer((req, res) => {
res.statusCode = 200;
res.setHeader('Content-Type', 'text/plain');
res.end('Hello, World!\n');

b

server.listen(3000, () => {
console.log('Server running at http://localhost:3000/');
b

© 0 N O Ok W N

=
o

Explanation: This code creates a simple HTTP server that listens on port
3000.

Basic Example
[e]e] e}

Running the Server

Steps to Run the Server:
@ Save the code as server. js in your project folder.
@ In the terminal, navigate to the folder and run the server with:
node server.js
© You should see a message like:

Server running at http://localhost:3000/

@ Open your browser and navigate to http://localhost:3000/ to see the output.

Basic Example
[e]e]e]]

Breakdown of the HT TP Server Code

Key Sections of the Code:
@ http.createServer(): Creates the HTTP server and handles incoming requests.

@ res.statusCode = 200: Sets the status code to 200, indicating a successful re-
quest.

@ res.setHeader (’Content-Type’, ’text/plain’): Specifies the content type of
the response as plain text.

@ res.end(’Hello, World!’): Ends the response and sends the data to the client.

@ server.listen(3000): Instructs the server to listen on port 3000.

Console Output: Displays when the server starts successfully.

Conclusion
€00

Recap of Key Concepts

What We’ve Covered:
@ Introduction to the Node.js HTTP module and its role in building a server.
@ Writing a simple Node.js server to handle HTTP requests.
@ Running and testing the server on localhost.

@ Understanding the key components of an HTTP server in Node.js.

Next Steps: Preparing to integrate front-end with back-end using HTTP
endpoints.

Conclusion
{ Je]

Questions and Next Steps

Any Questions?

Next Steps:
@ Review the code examples we covered in class.
@ Begin thinking about how to integrate front-end components with this HTTP server.

@ The hand-on assignment will help solidify your understanding.

Hand-on Assignment

@ Build a simple Node.js server that handles different types of requests:
o Serve different types of content (e.g., HTML, JSON).

o Set up different routes to respond to GET and POST requests.
@ Use the concepts covered in class to break down the HT TP server code.

@ Submit the project by the end of the week.

Tip: Start by expanding the basic server example and adding routes for
different paths (e.g., /, /about, /data).

Thank you for listening!

	Introduction
	Setup
	Core Concepts
	Asynchronous + Callbacks
	Basic Example
	Conclusion
	

