
Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Web Application Development

Node.js Fundamentals

KIEU Quoc Viet HUYNH Vinh Nam

Information and Communication Technology Laboratory (ICTLab),

University of Science and Technology of Hanoi

Hanoi, Sept 2024

Lecture 04 Hanoi, Sept 2024 1 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Table of Contents

1 Introduction

2 Setup

3 Core Concepts

4 Asynchronous + Callbacks

5 Basic Example

6 Conclusion

Lecture 04 Hanoi, Sept 2024 2 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Node.js Fundamentals

Lecture 04 Hanoi, Sept 2024 3 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

What is Node.js?

Definition:

Node.js is a JavaScript runtime built on

Chrome’s V8 engine that allows JavaScript to

be executed on the server.

Enables server-side programming with

JavaScript.

Key Points:

Uses non-blocking, event-driven architecture.

Primarily used for building scalable and fast net-

work applications.

Lecture 04 Hanoi, Sept 2024 4 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

What is Node.js? (cont.)

Why is it important?:

JavaScript can now be used end-to-end (front-end and back-end), reducing the need

for multiple programming languages across an application.

Lecture 04 Hanoi, Sept 2024 5 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Node.js Architecture

Single-threaded, Event-Driven:

Node.js operates on a single thread using the event loop to handle multiple connec-

tions concurrently.

Unlike traditional multithreaded servers, Node.js is non-blocking, allowing it to effi-

ciently manage multiple requests without creating new threads for each.

Event Loop:

Explain the event loop: The core of Node.js’ non-blocking architecture.

Handles I/O operations asynchronously, queuing up operations and processing them

once they’re complete.

Lecture 04 Hanoi, Sept 2024 6 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Node.js Architecture (cont.)

V8 Engine:

Node.js uses

Google’s V8

JavaScript en-

gine to convert

JavaScript code

into machine

code.

Lecture 04 Hanoi, Sept 2024 7 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Use Cases of Node.js

Lecture 04 Hanoi, Sept 2024 8 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Use Cases of Node.js (cont.)

Real-Time Applications: Suitable for chat applications, online col-

laboration tools, and multiplayer games.

API Servers: Commonly used to build RESTful APIs and microser-

vices.

Single-Page Applications (SPAs): Works well with frameworks like

React or Vue.js to handle dynamic content.

Data Streaming Applications: Ideal for audio/video streaming due

to its event-driven nature.

IoT Applications: Handles large amounts of data from IoT devices

efficiently.

Lecture 04 Hanoi, Sept 2024 9 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Recap: Why Node.js?

Node.js allows JavaScript to run on the server.

Uses a single-threaded, event-driven architecture to handle multiple

connections concurrently.

Powered by the V8 JavaScript engine for fast execution.

Ideal for real-time, API-based, and data-heavy applications.

Key takeaway: Node.js excels in non-blocking, asynchronous operations.

Lecture 04 Hanoi, Sept 2024 10 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Installing Node.js & NPM

Steps to Install:
1 Go to https://nodejs.org/ and

download the appropriate installer for

your OS.

2 Install Node.js along with npm (Node

Package Manager).
3 Verify installation:

node -v

npm -v

Lecture 04 Hanoi, Sept 2024 11 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Installing Node.js & NPM (cont.)

Lecture 04 Hanoi, Sept 2024 12 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Setting Up a Basic Node.js Project

Steps to Set Up:

1 Create a new project directory:

mkdir nodejs-fundamentals

cd nodejs-fundamentals

2 Initialize the project using npm:

npm init -y

3 This creates a package.json file to manage the project.

Lecture 04 Hanoi, Sept 2024 13 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Setting Up a Basic Node.js Project (cont.)

Lecture 04 Hanoi, Sept 2024 14 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Understanding package.json

What is package.json?

Contains metadata about your project.

Tracks dependencies for libraries and packages.

Defines custom scripts (e.g., commands to start a server).

Key Fields:

"name": Name of the project.

"version": Current version of the project.

"dependencies": Lists installed npm packages.

"scripts": Commands such as "start": "node app.js".

Lecture 04 Hanoi, Sept 2024 15 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Writing and Running the First Node.js Program

Create a file hello.js:

1 console.log('Hello, World from Node.js!');

Run the script in the terminal:

node hello.js

Output: Hello, World from Node.js!

Lecture 04 Hanoi, Sept 2024 16 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Node.js as a JavaScript Runtime

What is Node.js?

Node.js is a JavaScript runtime that allows JS to be executed on the

server-side.

Built on Chrome’s V8 JavaScript engine.

Provides an environment for building network applications, using non-

blocking I/O operations.

Lecture 04 Hanoi, Sept 2024 17 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Overview of Modules and require() Function

What are Modules?

Modules in Node.js are independent blocks of reusable code.

Node.js uses the require() function to load modules.

Example: Loading the fs Module

1 const fs = require('fs');

Built-in Modules: fs, http, url, etc.

Lecture 04 Hanoi, Sept 2024 18 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Example: Using the fs (File System) Module

Reading a File Synchronously:

1 const fs = require('fs');

2 let data = fs.readFileSync('file.txt', 'utf8');

3 console.log(data);

Explanation:

fs.readFileSync() reads a file synchronously, blocking execution until reading is complete.

console.log() outputs the file content.

Lecture 04 Hanoi, Sept 2024 19 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Creating Custom Modules

Creating and Exporting a Module:

1 // file: myModule.js

2 module.exports.sayHello = function() {

3 console.log('Hello from myModule!');

4 };

Importing and Using the Custom Module:

1 const myModule = require('./myModule');

2 myModule.sayHello(); // Outputs: Hello from myModule!

Lecture 04 Hanoi, Sept 2024 20 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Event-Driven Architecture in Node.js

What is Event-Driven Programming?

Node.js uses an event-driven architecture, where actions trigger events.

The Event Loop processes events asynchronously without blocking.

Lecture 04 Hanoi, Sept 2024 21 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Example: Using EventEmitter

Creating an Event Listener:

1 const EventEmitter = require('events');

2 const emitter = new EventEmitter();

3

4 // Register a listener

5 emitter.on('event', () => {

6 console.log('An event occurred!');

7 });

8

9 // Emit the event

10 emitter.emit('event'); // Outputs: An event occurred!

Explanation:

emitter.on() registers an event listener.

emitter.emit() triggers the event.

Lecture 04 Hanoi, Sept 2024 22 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Blocking vs Non-Blocking I/O

Blocking I/O:

Operations execute in sequence, one after the other.

Blocks further execution until the current operation is complete.

Non-Blocking I/O:

Operations can be initiated without waiting for the previous operation to complete.

Node.js excels in handling non-blocking, asynchronous operations.

Lecture 04 Hanoi, Sept 2024 23 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Example of Blocking Code

Synchronous File Reading:

1 const fs = require('fs');

2

3 let data = fs.readFileSync('file.txt');

4 console.log(data);

5 console.log('File reading complete.');

Output Order:

File content is printed first.

”File reading complete” is printed only after file is fully read.

Lecture 04 Hanoi, Sept 2024 24 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Example of Non-Blocking Code

Asynchronous File Reading:

1 const fs = require('fs');

2

3 fs.readFile('file.txt', (err, data) => {

4 if (err) throw err;

5 console.log(data);

6 });

7 console.log('File reading initiated.');

Output Order:

”File reading initiated” is printed first.

File content is printed later when reading is complete.

Lecture 04 Hanoi, Sept 2024 25 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

What are Callbacks?

Definition:

A callback is a function

passed as an argument

to another function.

It is executed after

an asynchronous oper-

ation completes.

Callback Syntax:

1 function fetchData(callback) {

2 // Simulate async operation

3 setTimeout(() => {

4 console.log('Data fetched!');

5 callback();

6 }, 1000);

7 }

8

9 fetchData(() => {

10 console.log('Callback executed.');

11 });

Lecture 04 Hanoi, Sept 2024 26 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Example: Callback Function

Asynchronous Operation with Callback:

1 function doSomething(callback) {

2 console.log('Doing something...');

3 callback();

4 }

5

6 function onComplete() {

7 console.log('Task complete.');

8 }

9

10 doSomething(onComplete); // Outputs: Doing something... Task complete.

Lecture 04 Hanoi, Sept 2024 27 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Error Handling in Callbacks

Handling Errors in Asynchronous Functions:

1 fs.readFile('file.txt', (err, data) => {

2 if (err) {

3 console.error('Error reading file:', err);

4 return;

5 }

6 console.log(data);

7 });

Explanation:

Check if err exists before proceeding.

Use return to stop further execution if an error occurs.

Lecture 04 Hanoi, Sept 2024 28 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Recap of Asynchronous Programming

Key Takeaways:

Node.js uses non-blocking I/O operations to handle multiple requests concurrently.

Callbacks are functions passed to asynchronous operations, executed when the task

is complete.

Proper error handling in callbacks is crucial for robust code.

Lecture 04 Hanoi, Sept 2024 29 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Introducing the HTTP Module

The HTTP Module in Node.js:

The built-in http module allows Node.js to create a basic web server.

Provides functionality for handling HTTP requests and responses.

No need for external libraries—just import and use.

Key Features:

Create an HTTP server with http.createServer().

Listen for requests on a specific port.

Lecture 04 Hanoi, Sept 2024 30 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Code Example: Basic HTTP Server in Node.js

Example Code:

1 const http = require('http');

2 const server = http.createServer((req, res) => {

3 res.statusCode = 200;

4 res.setHeader('Content-Type', 'text/plain');

5 res.end('Hello, World!\n');

6 });

7

8 server.listen(3000, () => {

9 console.log('Server running at http://localhost:3000/');

10 });

Explanation: This code creates a simple HTTP server that listens on port

3000.

Lecture 04 Hanoi, Sept 2024 31 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Running the Server

Steps to Run the Server:

1 Save the code as server.js in your project folder.

2 In the terminal, navigate to the folder and run the server with:

node server.js

3 You should see a message like:

Server running at http://localhost:3000/

4 Open your browser and navigate to http://localhost:3000/ to see the output.

Lecture 04 Hanoi, Sept 2024 32 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Breakdown of the HTTP Server Code

Key Sections of the Code:

http.createServer(): Creates the HTTP server and handles incoming requests.

res.statusCode = 200: Sets the status code to 200, indicating a successful re-

quest.

res.setHeader(’Content-Type’, ’text/plain’): Specifies the content type of

the response as plain text.

res.end(’Hello, World!’): Ends the response and sends the data to the client.

server.listen(3000): Instructs the server to listen on port 3000.

Console Output: Displays when the server starts successfully.

Lecture 04 Hanoi, Sept 2024 33 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Recap of Key Concepts

What We’ve Covered:

Introduction to the Node.js HTTP module and its role in building a server.

Writing a simple Node.js server to handle HTTP requests.

Running and testing the server on localhost.

Understanding the key components of an HTTP server in Node.js.

Next Steps: Preparing to integrate front-end with back-end using HTTP

endpoints.

Lecture 04 Hanoi, Sept 2024 34 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Questions and Next Steps

Any Questions?

Next Steps:

Review the code examples we covered in class.

Begin thinking about how to integrate front-end components with this HTTP server.

The hand-on assignment will help solidify your understanding.

Lecture 04 Hanoi, Sept 2024 35 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Hand-on Assignment

Build a simple Node.js server that handles different types of requests:

Serve different types of content (e.g., HTML, JSON).

Set up different routes to respond to GET and POST requests.

Use the concepts covered in class to break down the HTTP server code.

Submit the project by the end of the week.

Tip: Start by expanding the basic server example and adding routes for

different paths (e.g., /, /about, /data).

Lecture 04 Hanoi, Sept 2024 36 / 37



Introduction Setup Core Concepts Asynchronous + Callbacks Basic Example Conclusion

Thank you for listening!

Lecture 04 Hanoi, Sept 2024 37 / 37


	Introduction
	Setup
	Core Concepts
	Asynchronous + Callbacks
	Basic Example
	Conclusion
	

