
Practical 3

Web Application Development

October 7, 2024

Instructions

This assignment focuses on using Flask (Python) to build a backend web
application. You will implement different routes to handle web requests,
interact with a MySQL database using Flask-SQLAlchemy, and create APIs.
Complete the following exercises.

Tools Required:

� Python 3.x

� Flask and Flask-SQLAlchemy packages

� MySQL Database (or SQLite)

� Postman or cURL for API testing

Exercise 1: Install Flask Development Envi-

ronment

Download and install one of the following Python development environments:

� Anaconda (with Flask and SQLAlchemy)

� Any text editor (VSCode, PyCharm) with Flask installation using pip

install flask

Make sure to install Flask and SQLAlchemy for database handling.

1



Exercise 2: Flask Route to Display Strings

� Create a Flask application and write a route that displays the following
strings:

– ”Welcome to Flask Development!”

– ”This is Labwork 3: Flask/MySQL/API”

� Display these strings at the /welcome route.

Exercise 3: Display a Table Using Flask and

Jinja2

� Write a Flask route that renders a simple HTML table using Jinja2
templating. The table should display the following data:

– Column 1: Names

– Column 2: Ages

� Use a Python list or dictionary to pass the data to the template and
display it at the /table route.

Sample Table:

Name Age
Alice 22
Bob 19

Charlie 25
David 24
Eve 21

Table 1: Table of Names and Ages

The Flask route should render a table similar to this in HTML. Use the
following Python list or dictionary to pass the data to the Jinja2 template:

� data = [’name’: ’Alice’, ’age’: 22, ’name’: ’Bob’, ’age’:

19, ’name’: ’Charlie’, ’age’: 25, ’name’: ’David’, ’age’:

24, ’name’: ’Eve’, ’age’: 21]

2



Flask Route Example:

@app.route(’/table’)

def display_table():

data = [{’name’: ’Alice’, ’age’: 22}, {’name’: ’Bob’, ’age’: 19},

{’name’: ’Charlie’, ’age’: 25}, {’name’: ’David’, ’age’: 24},

{’name’: ’Eve’, ’age’: 21}]

return render_template(’table.html’, students=data)

In your Jinja2 template (table.html), use a loop to generate the rows dy-
namically:

<table border="1">

<tr>

<th>Name</th>

<th>Age</th>

</tr>

{% for student in students %}

<tr>

<td>{{ student.name }}</td>

<td>{{ student.age }}</td>

</tr>

{% endfor %}

</table>

Exercise 4: Flask Function to Calculate Facto-

rial

� Write a Flask route that accepts a number as a URL parameter and
calculates the factorial of the number.

� Example URL: /factorial/5

� The function should return the factorial of the number using Python’s
math module.

3



Exercise 5: Flask Function to Check Prime

Number

� Write a Flask route that accepts a number as a URL parameter and
checks if the number is prime.

� Example URL: /is prime/7

� Return "Prime" if the number is prime, otherwise return "Not Prime".

Exercise 6: Flask Function to Sort a Numerical

Array

� Write a Flask route that accepts a list of numbers (via URL query
parameters) and returns the sorted array.

� Example URL: /sort?numbers=4,2,9,1

� Return the sorted array in ascending order.

Exercise 7: Flask Function to Reverse a String

� Write a Flask route that accepts a string as a URL parameter and
returns the reversed string.

� Example URL: /reverse string/hello

� Output should be "olleh".

Exercise 8: Use Flask with MySQL for Database

Operations

1. Create a MySQL Database and Table Using Flask:

� Use Flask-SQLAlchemy to create the following table in MySQL:

– students: id (Primary Key), name, class, and mark

4



� Write a Flask route that creates this table.

2. Insert Data into the Table:

� Write a route that inserts students’ data into the MySQL database.

� Example student data: Name: John, Class: One, Mark: 80

3. Update Data Based on Condition:

� Write a route to update the class of students where the mark is
less than 60.

� Students with marks less than 60 should have their class updated
to ”Two.”

4. Select and Display Students by Groups:

� Write Flask routes to query and display students from the database
grouped by marks:

– Excellent students: mark > 75

– Good students: 60 ≤ mark ≤ 75

– Average students: mark < 60

� Display the result in three separate HTML tables using Jinja2
templating.

Exercise 9: Build a Frontend for an API with

Flask

� Study the Dummy static API at https://dummyapi.io/.

� Create a Flask application that serves as a backend API. Your API
should perform the following:

1. Users:

– List available users at the /users route.

– Show detailed info of a user profile at /user/{user id}.
– List all posts for a specific user at /user/{user id}/posts.

2. Posts:

5

https://dummyapi.io/


– List available posts at the /posts route.

– List all comments for a specific post at /post/{post id}/comments.

6


