Introduction to Deep Learning

CNN for Image Classification

Image Classification

* |mage classification is the task of assigning a label
or class to an entire image

Image Classification

* |mages are expected to have only one class for
each image

Image Classification

* Image classification models take an image as
input and return a prediction about which class
the image belongs to

Image Classification

 “Dog vs. cat” classification is one problem of the
so-called binary classification of images

Image Classification

* Having a grey scale image with size 28 * 28 presenting a
number from 0-9
* Predict which number the image is presenting ?

* - Problem of multi-class classification of images

Image Classification

Multi-Class Multi-Label
C=3 Samples Samples
vAg , (&
<]”v“b o <:¢«'> o (%}O
K Labels () Labels (t)
O [001] [100] [010] [101] [010] [111]

Multi-class vs. Multi-label classification

Image Datasets

You can visit this website to get information of the
dataset: https://paperswithcode.com/datasets

Use in this lecture:

* “Dogs vs. Cats” dataset downloaded from Kaggle
https://www.kaggle.com/c/dogs-vs-cats/data

 “MNIST Dataset of handwritten digits” downloaded
from Kaggle

https://www.kaggle.com/datasets/hojjatk/mnist-dataset

https://paperswithcode.com/datasets
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/hojjatk/mnist-dataset

Dataset Preparation

e Standardize images prior to the model requirement

e Standardize directories for training set, validation set and test set

Original labeled data

Split

, A4) A4 .
‘ Valldatlon’ ‘Testset‘

Training set o

CNN model for Image Classification

Input data are images - choose CNN model
General progress: input image = Convolutional layer (Conv) + Pooling Layer

(Pool) = Fully Connected Layer (FC) - Output

CAT

DOG

oo

Output

CNN model for Image Classification

* Input data are images = choose CNN model
* General progress: input image = Convolutional layer (Conv) + Pooling Layer
(Pool) = Fully Connected Layer (FC) - Output

CNN model for Image Classification

* Input data are images = choose CNN model
* General progress: input image = Convolutional layer (Conv) + Pooling Layer
(Pool) = Fully Connected Layer (FC) - Output

28*28

Input

CONV 3*3

K: 32
S:1
P:1

28 *28*32

_

CONV 3*3

28*28*32

K: 32
S:1
P:1

_

POOL 2*2

14*14* 32

S:2
P:0

14*14*32 = 6272 nodes

FLATTEN

FC1:128

L

FC2:10

il

Output

CNN model for Image Classification

* You can build a CNN network by yourself to perform image
classification

* You can also use the existing CNN architecture like VGG,
ResNet, etc. to perform image classification

e Or you can modify the existing CNN architecture (VGG,
ResNet, etc.) to perform image classification

CNN model for Image Classification

Top 1-accuracy, performance and size on the ImageNet dataset

80 - 80
Inception-v3 .
ResNet-101
75 | 75 | ResNet-SO‘ VGG-16 VGG-19
. ResNet-34
X701 R 70 a ResNet-18
g g GooglLeNet
5 5
S 65 - S 65 -
© ©
3 3 @ BN-NIN
o (o]
F 60 4 F 60 - 5M 35M 65M 95M 125M 155M
BN-AlexNet
55 1 55 1 ‘ AlexNet
50 4 50 . ' J . : : . :
& N (& AD A6 A9 o O v P 0 5 10 15 20 25 30 35 40
PB@‘F“ pX"j&\ $$ \,®$ $e’$ \‘66’ \\6(')’ 6$6’V g $e\:6$e‘:\« ‘.‘\0(\’ Operations [G-Ops]
Y e e €7 e (2

See: https://paperswithcode.com/sota/image-classification-on-
imagenet for more information

Canziani, Paszke, and Culurciello. "An Analysis of Deep Neural
Network Models for Practical Applications." (May 2016).

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet

CNN model for Image Classification

Method # Params | ImageNet ImageNet-Real [6]

Top-1 Top-5 Precision@1
ResNet-50 [24] 26M - 76.0 93.0 82.94
ResNet-152 [24] 60M — 77.8 93.8 84.79
DenseNet-264 [25] 34M — 77.9 93.9 —
Inception-v3 [62] 24M — 78.8 94.4 83.58
Xception [11] 23M — 79.0 94.5 —
Inception-v4 [61] 48M — 80.0 95.0 =
Inception-resnet-v2 [61] 56M - 80.1 95.1 -
ResNeXt-101 [78] 84M - 80.9 95.6 85.18
PolyNet [£7] 92M - 81.3 95.8 —
SENet [27] 146M - 82.7 96.2 -
NASNet-A [90] 89M — 82.7 96.2 82.56
AmoebaNet-A [52] 8™ - 82.8 96.1 -
PNASNet [3Y] 86M — 82.9 96.2 —
AmoebaNet-C + AutoAugment [2] 155M - 83.5 96.5 —
GPipe [29] 557M - 84.3 97.0 -
EfficientNet-B7 [63] 66M — 85.0 97.2 —
EfficientNet-B7 + FixRes [70)] 66M - 85.3 97.4 —
EfficientNet-L2 [63] 480M — 85.5 97.5 —
ResNet-50 Billion-scale SSL [79] 26M 3.5B labeled Instagram 81.2 96.0 i
ResNeXt-101 Billion-scale SSL [79] 193M 3.5B labeled Instagram 84.8 — -
ResNeXt-101 WSL [42] 829M 3.5B labeled Instagram 85.4 97.6 88.19
FixRes ResNeXt-101 WSL [69] 8290M 3.5B labeled Instagram 86.4 98.0 89.73
Big Transfer (BiT-L) [37] 928M 300M labeled JFT 87.5 98.5 90.54
Noisy Student (EfficientNet-L2) [77] 480M 300M unlabeled JFT 88.4 98.7 90.55
Noisy Student + FixRes [70)] 480M 300M unlabeled JFT 88.5 98.7 —
Vision Transformer (ViT-H) [4] 632M 300M labeled JFT 88.55 -— 90.72
EfficientNet-L2-NoisyStudent + SAM [16] 480M 300M unlabeled JFT 88.6 98.6 —
Meta Pseudo Labels (EfficientNet-B6-Wide) 390M 300M unlabeled JFT 90.0 98.7 91.12
Meta Pseudo Labels (EfficientNet-L2) 480M 300M unlabeled JFT 90.2 98.8 91.02

Meta Pseudo Labels, Hieu Pham et al. (Jan 2021).

Activation Function

* Binary classification:
* Activation function at output layer (with one
node) is sigmoid function

o 1
fisi) =- .
1 + e 5i

* Multi-class classification:
e Activation function at output layer (with > 1
nodes) is softmax function

53
. 7 ‘.‘ . {
flshi = —=—
5
S

s, .
. Softmax) Crosi—Entropy } t
Sigmoid - it
’ (s) (--i--
¢ ' GT

e Cross-entropy loss is used as default loss function
for both binary and multi-class classification

Cross-entropy loss

* Formula of cross-entropy loss:

-
CE =— Z tilog(s;)
i

* Where t;, s; is the groundtruth and the CNN score
for each classiin C

Binary cross-entropy loss

* Binary cross-entropy loss:

; {) o
1 Sigmoid J L CrosioESr;tropy 1

| CE = —tilog(f(s1)) = (1 = t)log(1 = f(s1))

1 4es

f(b'i)

* The loss can be expressed as:

CE = —log(f(s1)) —if =1
—logl1l — f(s1)) if t1 =10

Where t1 = 1 means that the class C1 = Ci is the
positive class

Categorical cross-entropy loss

e Categorical cross-entropy loss:

s [| [cross
R Sofimax | Cross-Entropy }
L J L Loss

Sq

B €
T e

* |In multi-class classification, the labels are one-hot, so

only the positive class C, keeps its term in the loss:
Only 1 element of the output vector is not zero

N e’r
EJ. e5;

Where S, is the CNN score for the positive class

C
f(s): CE = — th'ZOQ(f(S)z‘)

Categorical cross-entropy loss

 Example for the problem of multi-class classification
of handwritten digits

* One-hot encoding: transform data label as number i
to the vector v of size 10 * 1 where v;,; = 1 and

others =0

QOO OO —~~0000OCO0

(data) (label)

Categorical cross-entropy loss

0 ag

0 a»

0 as

0 dy

0 ds

1 dg

0 a7

0 asg

0 do

0 daio

y b
Actual Predicted
value value

* Our expectation is ag close to 1 and others close to 0

10
L=—) yi*log(y)
i=1

e Withi=5 [= —108()?6)

Loss Function

L=—log(¥e) :

0.'0 0.'2 0:4 0.'6 0.8 1.0

e Loss function L becomes smaller when the predicted value is
closer to the actual value, vice versa

* Qur problem becomes “finding minimum value of L’

Pre-trained CNN models

Pre-trained models:

* Training a model on big and general datasets such as ImageNet,
VGGFace2 from scratch takes days or weeks

 Many models were trained on ImageNet/VGGFace2 and their weights
are publicly available

Pre-trained CNN models

Transfer learning:

e Use pre-trained weights, remove last layers to compute
representations of images

* Train a classification model from these features on a new
classification task

 The network is used as a generic feature extractor

higher slope higher asymptote

------ with transfer
— Wwithout transfer

performance

higher start

training

Pre-trained CNN models

Fine-tuning: retraining the (some) parameters of the network
given enough data

* Truncate the last layer(s) of the pre-trained network

* Freeze the remaining layer’s weights

* Add a (linear) classifier on top and train it for a few epochs
* Then fine-tune the whole network or the few deepest layers
* Use a smaller learning rate when fine tuning

* Multi-class classification problem: Classify 17
types of flowers, in which each type has about
80 images

Bluebell Buttercup ColtsFoot

* Multi-class classification problem: Classify 17
types of flowers, in which each type has about

Bluebell Buttercup ColtsFoot Cowslip Crocus Daffodil Daisy
Dandelion Fritillary Iris LilyValley Pansy Snowdrop Sunflower
Tigerlily Tulip Windflower

Solution: Transfer Learning

* Use pre-trained model VGG16 on ImageNet
dataset, which contains 1,2 million images of
1000 classes

* This pre-trained model is already supported in
Keras

Transfer Learning : Feature extractor

Original VGG16

Input

/

(CONV *2) =>
POOL

y

(CONV * 2) =>
POOL

Y

(CONV * 3) =>
POOL

v

(CONV * 3) =>
POOL

.

(CONV * 3) =>
POOL

v

(FC*3)=>
SOFTMAX

y

Output Labels

224x224x3

112x112x128

56x56x256

28x28x512

14x14x512

7x7x512

1x1x1000

Input

(CONV * 2) =>
POOL

.

(CONV * 2) =>
POOL

Y

(CONV * 3) =>
POOL

.

(CONV * 3) =>
POOL

y

(CONV * 3) =>
POOL

Output Features

224x224x3
112x112x128
56x56x256
VGG16 with the
U removal of fully
connected layers
14x14x512
7X7x512

Transfer Learning : Feature extractor

Extracted Feature

e Qutput features are
used as input of linear
classifiers such as
linear SVM

Input layer

Output layer

of nodes in output layer = # of
classes to classify

Transfer Learning : Fine Tuning

Input

e ConvNet of VGG16 are ‘

kept, FCs of VGG16 are ona=

removed (‘,

POOL

* New FC layers are l
Original T
added to the network Layers | t)

(CONV * 3) =>
POOL

!

(CONV * 3) =>
POOL

!

(FC*3)=> (FC*3)=>
SOFTMAX SOFTMAX

New FC
Layers i

Output Labels

0ld FC
Layers

Transfer Learning : Fine Tuning

Input

* First stage of training: ;
freeze pre-trained ‘°°”'i55’=’
layers, only train newly P

added |ayers Freeze Early '

A (CONV * 3) =>
Layers 1n PoOOL
Network I

(CONV * 3) =>
POOL

!

(CONV * 3) =>
POOL

!

Only Train (FC*3)=>
FC Layers SOFTMAX

v

Output Labels

Transfer Learning : Fine Tuning

e Second stage of ¢

(CONV *2) =>

training: unfreeze pre- 5

trained layers, train the ——

whole network I

(CONV * 3) =>
POOL

Unfreeze Early
Layers & Train I
Al l (CONV * 3) =

POOL

v

(CONV *3) =>
POOL

y

(FC*3)=>
SOFTMAX

!

Output Labels

Data augmentation

e Data augmentation is a technique to generate more
training data from our dataset

Data Augmentation

50 A
100 -

e " P ?
| 1501

i k.'.‘ » 2
/{7 % g F /4
200) NG~

r (v

0 50 100 150 200

* Flip image horizontally

Data Augmentation

50 50

100 4 100

150 | 1504

SSSNRY | 200 -
A ‘_.D‘" 2o

0 50 100 150 200

* Rotate image 30 degrees
* Problem of black regions

Data Augmentation

50 4

100 SN

150

e Scale the image to bigger size

Data Augmentation

50 4

100 4.

150

150

e Crop an image region and resize to the
same size with the original image

Data Augmentation

50

100 4.

150

* Translate image 30px via x-axis, 10px via y-axis
* Problem of black regions

| 150

50

100

N
ey | 200

N A

N \~ ‘r

150

Data Augmentation with Keras

from keras.preprocessing.image import ImageDataGenerator

image_gen = ImageDataGenerator(
rescale=1. / 255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal flip=True,
channel_shift_range=9,
fill_mode='nearest'

)

train_flow = image_gen.flow_from_directory(train_folder)
model.fit_generator(train_flow, train_flow.n)

