Introduction to Deep Learning

CNN for Image Classification




Image Classification

* |mage classification is the task of assigning a label
or class to an entire image




Image Classification

* |mages are expected to have only one class for
each image



Image Classification

* Image classification models take an image as
input and return a prediction about which class
the image belongs to



Image Classification

 “Dog vs. cat” classification is one problem of the
so-called binary classification of images



Image Classification

* Having a grey scale image with size 28 * 28 presenting a
number from 0-9
* Predict which number the image is presenting ?

* - Problem of multi-class classification of images




Image Classification
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Multi-class vs. Multi-label classification



Image Datasets

You can visit this website to get information of the
dataset: https://paperswithcode.com/datasets

Use in this lecture:

* “Dogs vs. Cats” dataset downloaded from Kaggle
https://www.kaggle.com/c/dogs-vs-cats/data

 “MNIST Dataset of handwritten digits” downloaded
from Kaggle

https://www.kaggle.com/datasets/hojjatk/mnist-dataset
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Dataset Preparation

e Standardize images prior to the model requirement

e Standardize directories for training set, validation set and test set

Original labeled data

Split
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‘ Valldatlon’ ‘Testset‘

Training set o




CNN model for Image Classification

Input data are images - choose CNN model
General progress: input image = Convolutional layer (Conv) + Pooling Layer

(Pool) = Fully Connected Layer (FC) - Output
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CNN model for Image Classification

* Input data are images = choose CNN model
* General progress: input image = Convolutional layer (Conv) + Pooling Layer
(Pool) = Fully Connected Layer (FC) - Output




CNN model for Image Classification

* Input data are images = choose CNN model
* General progress: input image = Convolutional layer (Conv) + Pooling Layer
(Pool) = Fully Connected Layer (FC) - Output

28*28

Input

CONV 3*3

K: 32
S:1
P:1

28 *28*32

_

CONV 3*3

28*28*32

K: 32
S:1
P:1

_

POOL 2*2

14*14* 32

S:2
P:0

14*14*32 = 6272 nodes

FLATTEN

FC1:128

L

FC2:10

il

Output




CNN model for Image Classification

* You can build a CNN network by yourself to perform image
classification

* You can also use the existing CNN architecture like VGG,
ResNet, etc. to perform image classification

e Or you can modify the existing CNN architecture (VGG,
ResNet, etc.) to perform image classification



CNN model for Image Classification

Top 1-accuracy, performance and size on the ImageNet dataset
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See: https://paperswithcode.com/sota/image-classification-on-
imagenet for more information

Canziani, Paszke, and Culurciello. "An Analysis of Deep Neural
Network Models for Practical Applications." (May 2016).
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CNN model for Image Classification

Method # Params | ImageNet ImageNet-Real [6]

Top-1 Top-5 Precision@1
ResNet-50 [24] 26M - 76.0 93.0 82.94
ResNet-152 [24] 60M — 77.8 93.8 84.79
DenseNet-264 [25] 34M — 77.9 93.9 —
Inception-v3 [62] 24M — 78.8 94.4 83.58
Xception [11] 23M — 79.0 94.5 —
Inception-v4 [61] 48M — 80.0 95.0 =
Inception-resnet-v2 [61] 56M - 80.1 95.1 -
ResNeXt-101 [78] 84M - 80.9 95.6 85.18
PolyNet [£7] 92M - 81.3 95.8 —
SENet [27] 146M - 82.7 96.2 -
NASNet-A [90] 89M — 82.7 96.2 82.56
AmoebaNet-A [52] 8™ - 82.8 96.1 -
PNASNet [3Y] 86M — 82.9 96.2 —
AmoebaNet-C + AutoAugment [ 2] 155M - 83.5 96.5 —
GPipe [29] 557M - 84.3 97.0 -
EfficientNet-B7 [63] 66M — 85.0 97.2 —
EfficientNet-B7 + FixRes [ 70)] 66M - 85.3 97.4 —
EfficientNet-L2 [63] 480M — 85.5 97.5 —
ResNet-50 Billion-scale SSL [79] 26M 3.5B labeled Instagram  81.2 96.0 i
ResNeXt-101 Billion-scale SSL [79] 193M 3.5B labeled Instagram  84.8 — -
ResNeXt-101 WSL [42] 829M 3.5B labeled Instagram  85.4 97.6 88.19
FixRes ResNeXt-101 WSL [69] 8290M 3.5B labeled Instagram  86.4 98.0 89.73
Big Transfer (BiT-L) [37] 928M 300M labeled JFT 87.5 98.5 90.54
Noisy Student (EfficientNet-L2) [77] 480M 300M unlabeled JFT 88.4 98.7 90.55
Noisy Student + FixRes [70)] 480M 300M unlabeled JFT 88.5 98.7 —
Vision Transformer (ViT-H) [ 4] 632M 300M labeled JFT 88.55 -— 90.72
EfficientNet-L2-NoisyStudent + SAM [16] 480M 300M unlabeled JFT 88.6 98.6 —
Meta Pseudo Labels (EfficientNet-B6-Wide) 390M 300M unlabeled JFT  90.0 98.7 91.12
Meta Pseudo Labels (EfficientNet-L2) 480M 300M unlabeled JFT  90.2 98.8 91.02

Meta Pseudo Labels, Hieu Pham et al. (Jan 2021).




Activation Function

* Binary classification:
* Activation function at output layer (with one
node) is sigmoid function
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* Multi-class classification:
e Activation function at output layer (with > 1
nodes) is softmax function
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e Cross-entropy loss is used as default loss function
for both binary and multi-class classification



Cross-entropy loss

* Formula of cross-entropy loss:

-
CE =— Z tilog(s;)
i

* Where t;, s; is the groundtruth and the CNN score
for each classiin C




Binary cross-entropy loss

* Binary cross-entropy loss:
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| CE = —tilog(f(s1)) = (1 = t)log(1 = f(s1))
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* The loss can be expressed as:

CE = —log(f(s1)) —if =1
—logl1l — f(s1)) if t1 =10

Where t1 = 1 means that the class C1 = Ci is the
positive class



Categorical cross-entropy loss

e Categorical cross-entropy loss:
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* |In multi-class classification, the labels are one-hot, so

only the positive class C, keeps its term in the loss:
Only 1 element of the output vector is not zero
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Where S, is the CNN score for the positive class

C
f(s): CE = — th'ZOQ(f(S)z‘)



Categorical cross-entropy loss

 Example for the problem of multi-class classification
of handwritten digits

* One-hot encoding: transform data label as number i
to the vector v of size 10 * 1 where v;,; = 1 and

others =0

QOO OO —~~0000OCO0

(data) (label)




Categorical cross-entropy loss
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* Our expectation is ag close to 1 and others close to 0
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Loss Function

L=—log(¥e) :

0.'0 0.'2 0:4 0.'6 0.8 1.0

e Loss function L becomes smaller when the predicted value is
closer to the actual value, vice versa

* Qur problem becomes “finding minimum value of L’



Pre-trained CNN models

Pre-trained models:

* Training a model on big and general datasets such as ImageNet,
VGGFace2 from scratch takes days or weeks

 Many models were trained on ImageNet/VGGFace2 and their weights
are publicly available




Pre-trained CNN models

Transfer learning:

e Use pre-trained weights, remove last layers to compute
representations of images

* Train a classification model from these features on a new
classification task

 The network is used as a generic feature extractor

higher slope higher asymptote

------ with transfer
— Wwithout transfer

performance

higher start

training



Pre-trained CNN models

Fine-tuning: retraining the (some) parameters of the network
given enough data

* Truncate the last layer(s) of the pre-trained network

* Freeze the remaining layer’s weights

* Add a (linear) classifier on top and train it for a few epochs
* Then fine-tune the whole network or the few deepest layers
* Use a smaller learning rate when fine tuning




* Multi-class classification problem: Classify 17
types of flowers, in which each type has about
80 images

Bluebell Buttercup ColtsFoot



* Multi-class classification problem: Classify 17
types of flowers, in which each type has about

Bluebell Buttercup ColtsFoot Cowslip Crocus Daffodil Daisy
Dandelion Fritillary Iris LilyValley Pansy Snowdrop Sunflower
Tigerlily Tulip Windflower



Solution: Transfer Learning

* Use pre-trained model VGG16 on ImageNet
dataset, which contains 1,2 million images of
1000 classes

* This pre-trained model is already supported in
Keras




Transfer Learning : Feature extractor

Original VGG16
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Transfer Learning : Feature extractor

Extracted Feature

e Qutput features are
used as input of linear
classifiers such as
linear SVM

Input layer

Output layer

# of nodes in output layer = # of
classes to classify



Transfer Learning : Fine Tuning
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Transfer Learning : Fine Tuning
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Transfer Learning : Fine Tuning

e Second stage of ¢
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Data augmentation

e Data augmentation is a technique to generate more
training data from our dataset




Data Augmentation
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* Flip image horizontally



Data Augmentation
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* Rotate image 30 degrees
* Problem of black regions



Data Augmentation
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e Scale the image to bigger size



Data Augmentation
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e Crop an image region and resize to the
same size with the original image



Data Augmentation
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Data Augmentation with Keras

from keras.preprocessing.image import ImageDataGenerator

image_gen = ImageDataGenerator(
rescale=1. / 255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal flip=True,
channel_shift_range=9,
fill_mode='nearest'

)

train_flow = image_gen.flow_from_directory(train_folder)
model.fit_generator(train_flow, train_flow.n)






