
CNN for Image Classification

Introduction to Deep Learning
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• Image classification is the task of assigning a label 
or class to an entire image
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• Images are expected to have only one class for 
each image
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• Image classification models take an image as 
input and return a prediction about which class 
the image belongs to
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• “Dog vs. cat” classification is one problem of the 
so-called binary classification of images



Image Classification
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• Having a grey scale image with size 28 * 28 presenting a 
number from 0-9

• Predict which number the image is presenting ?

• à Problem of multi-class classification of images



Image Classification

7

Multi-class vs. Multi-label classification



Image Datasets
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You can visit this website to get information of the 
dataset: https://paperswithcode.com/datasets

Use in this lecture: 
• “Dogs vs. Cats” dataset downloaded from Kaggle 

https://www.kaggle.com/c/dogs-vs-cats/data

• “MNIST Dataset of handwritten digits” downloaded 
from Kaggle 

https://www.kaggle.com/datasets/hojjatk/mnist-dataset

https://paperswithcode.com/datasets
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
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• Standardize images prior to the model requirement

• Standardize directories for training set, validation set and test set



CNN model for Image Classification
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• Input data are images à choose CNN model
• General progress: input image à Convolutional layer (Conv) + Pooling Layer 

(Pool) à Fully Connected Layer (FC) à Output
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• Input data are images à choose CNN model
• General progress: input image à Convolutional layer (Conv) + Pooling Layer 

(Pool) à Fully Connected Layer (FC) à Output
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• You can build a CNN network by yourself to perform image 
classification

• You can also use the existing CNN architecture like VGG, 
ResNet, etc. to perform image classification

• Or you can modify the existing CNN architecture (VGG, 
ResNet, etc.) to perform image classification



CNN model for Image Classification
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Top 1-accuracy, performance and size on the ImageNet dataset

See: https://paperswithcode.com/sota/image-classification-on-
imagenet for more information

Canziani, Paszke, and Culurciello. "An Analysis of Deep Neural 
Network Models for Practical Applications." (May 2016).

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
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Meta Pseudo Labels, Hieu Pham et al. (Jan 2021).



Activation Function
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• Binary classification: 
• Activation function at output layer (with one 

node) is sigmoid function

• Multi-class classification: 
• Activation function at output layer (with > 1 

nodes) is softmax function



Loss function
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• Cross-entropy loss is used as default loss function 
for both binary and multi-class classification



Cross-entropy loss
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• Formula of cross-entropy loss:

• Where ti, si is the groundtruth and the CNN score 
for each class i in C



Binary cross-entropy loss
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• Binary cross-entropy loss:

• The loss can be expressed as:

Where t1 = 1 means that the class C1 = Ci is the 
positive class



Categorical cross-entropy loss
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• Categorical cross-entropy loss:

• In multi-class classification, the labels are one-hot, so 
only the positive class Cp  keeps its term in the loss: 
Only 1 element of the output vector is not zero

Where Sp is the CNN score for the positive class



Categorical cross-entropy loss
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• Example for the problem of multi-class classification 
of handwritten digits

• One-hot encoding: transform data label as number i 
to the vector v of size 10 * 1 where vi+1 = 1 and 
others = 0



Categorical cross-entropy loss
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• Our expectation is a6 close to 1 and others close to 0

Actual 
value

Predicted 
value
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• With i = 5: 



Loss Function
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• Loss function L becomes smaller when the predicted value is 
closer to the actual value, vice versa

• Our problem becomes “finding minimum value of L”



Pre-trained CNN models
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• Training a model on big and general datasets such as ImageNet, 
VGGFace2 from scratch takes days or weeks

•  Many models were trained on ImageNet/VGGFace2 and their weights 
are publicly available

Pre-trained models:



Pre-trained CNN models
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Transfer learning:

• Use pre-trained weights, remove last layers to compute 
representations of images

•  Train a classification model from these features on a new 
classification task

• The network is used as a generic feature extractor



Pre-trained CNN models
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• Truncate the last layer(s) of the pre-trained network
• Freeze the remaining layer’s weights
• Add a (linear) classifier on top and  train it for a few epochs
• Then fine-tune the whole network or the few deepest layers
• Use a smaller learning rate when fine tuning 

Fine-tuning: retraining the (some) parameters of the network 
given enough data 
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• Multi-class classification problem: Classify 17 
types of flowers, in which each type has about 
80 images 

Bluebell Buttercup ColtsFoot

……



Example
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• Multi-class classification problem: Classify 17 
types of flowers, in which each type has about 
80 images 
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• Use pre-trained model VGG16 on ImageNet 
dataset, which contains 1,2 million images of 
1000 classes

• This pre-trained model is already supported in 
Keras



Transfer Learning : Feature extractor
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Original VGG16
VGG16 with the 
removal of fully 
connected layers



Transfer Learning : Feature extractor
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• Output features are 
used as input of linear 
classifiers such as 
linear SVM

# of nodes in output layer = # of 
classes to classify
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• ConvNet of VGG16 are 
kept, FCs of VGG16 are 
removed

• New FC layers are 
added to the network
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• First stage of training: 
freeze pre-trained 
layers, only train newly 
added layers 



Transfer Learning : Fine Tuning
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• Second stage of 
training: unfreeze pre-
trained layers, train the 
whole network
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• Data augmentation is a technique to generate more 
training data from our dataset
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• Flip image horizontally
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• Rotate image 30 degrees
• Problem of black regions
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• Scale the image to bigger size
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• Crop an image region and resize to the 
same size with the original image



Data Augmentation
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• Translate image 30px via x-axis, 10px via y-axis
• Problem of black regions



Data Augmentation with Keras
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