
Object Detection and Image 
Segmentation

Introduction to Deep Learning



Problem of Image Classification
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• Mostly on centered images

• Only a single object per image

à Cannot solve many real life vision tasks



Beyond Image Classification
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Localization
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• Single object per image
• Predict coordinates of a bounding box (x, y, w, h)
• Evaluate via the metric Intersection over Union (IoU)



Localization as Regression
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Localization as Regression
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Classification + Localization
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Classification + Localization
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• Use a pre-trained CNN on ImageNet (ex. ResNet)
• The “localization head” is trained separately with regression
• Possible end-to-end fine-tuning of both tasks 
• At test time, use both heads



Classification + Localization
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• C classes, 4 output dimensions (for 1 bounding box)
• Predict exactly N objects: predict (N x 4) coordinates and (N x K) 

class scores 



Object Detection
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• Problem: we don’t know in advance the 
number of objects in the image

• Object detection performs two main tasks:
• Object proposal: find regions of interest 

(ROIs) in the image
• Object classification: classify the object in 

these regions 



Object Detection
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Two main tasks in object detection can be expressed as follows:
• Define bounding boxes of the objects
• For each bounding box, classify the object inside it to some classes (e.g. 

dog, horse, person, car, etc…) with % of confidence



Object Detection
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• Two main families to perform object detection:
• Single-Stage: A grid in the image where each 

cell is a proposal

• Two-Stage: Region proposal then classification 
(Faster R-CNN)



Object Detection with Deep Learning
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• Faster R-CNN
• YOLO
• RetinaNet



Object Detection with Deep Learning
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• Faster R-CNN
• YOLO
• RetinaNet



Faster R-CNN
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• R-CNN
• Fast R-CNN
• Faster R-CNN

Instead of having a predefined set of box proposals, 
find them on the image by:

• Selective Search – from pixels (not learnt, not 
used any more)

• Faster R-CNN – Region Proposal Network (RPN)
 



Faster R-CNN
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Crop-and-resize operator (RoI-Pooling)
• Input: Convolutional map + N regions of interest
• Output: tensor of N x 7 x7 x depth boxes
• Allow to propagate gradient only on interesting 

regions, and efficient computation

 



R-CNN
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• R-CNN (Region with CNN feature) algorithm:
• Step 1: use Selective Search algorithm to get 

around 2000 bounding box in the input image 
which can contain the object

• Step 2: with each bounding box, identify its 
class (e.g. person, car, etc…)



Selective Search Algorithm
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• Input: color image
• Output: around 2000 region proposal (bounding 

box) which can contain the objects



Selective Search Algorithm
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Image is segmented using the Graph Based Image 
Segmentation algorithm



Selective Search Algorithm
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• Cannot use 1 color to present 1 region proposal
• Each object can contain several colors
• Some parts of an object can be hidden by others

• 1 region proposal is presented by a group of colors, 
each having color similarity, gradient direction, size, 
etc.



Classify Region Proposal
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• Problem becomes Region Proposal Classification
• Issue: in 2000 region proposals output from 

selective search algorithm, there exists region 
proposal without any objects

• à one background class is added to solve the issue



Classify Region Proposal
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Input image (1) à Extract region proposals (2) à resize region 
proposals to the same size à transfer learning with feature 
extractor (3) à use SVM to classify the regions  as person, or 
horse or background, etc. (4) 



Problem of R-CNN
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• For each image, need to classify 2000 region 
proposals -> very long training time

• Cannot apply real-time object detection à 
each image in test set uses 47s for processing



Fast R-CNN
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• The whole input image is fed into Deep 
ConvNet to produce Conv feature map

• RoI is projected into Deep ConvNet with the 
input image

• à region proposals are obtained from Conv 
feature map



Fast R-CNN
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• RoI pooling layer is used to transform region 
proposals in the Conv feature maps to the same size

• Region proposals are flattened and fed into 2 FCs 
layers to predict class and regress the offset values of 
bounding box



R-CNN vs. Fast R-CNN
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• Fast R-CNN is much faster than R-CNN
• But in Test time, calculating region proposals by selective search make 

Fast R-CNN slower
• à we can replace the selective search algorithm by deep learning?
• à Yes! Using Faster R-CNN



Faster R-CNN
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Architecture of Faster R-CNN



Region Proposal Network
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• Replace selective search algorithm to obtain region proposals from 
feature maps

• Input: feature map
• Output: region proposals
• à anchor box is used to present region proposal 



Concept of Anchor Box
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• Each anchor box is defined by 4 paramaters (x_center, y_center, width, height)
• # of anchors are pre-defined à after passing through RPN à only anchor box 

containing objects are kept



RPN algorithm
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• Feature maps are fed into Conv layer 3*3, 512 kernels
• With each anchor, RPN calculates two steps:

• Predict if anchor is foreground (contain object) or 
background (does not contain object)

• Predict 4 offset values for x_center, y_center, width, height 
of anchor

• Non-maxima suppression is used to remove overlap anchor 
boxes

• Based on confidence score, RPN will get N (N can be 2000, 
1000, etc.) anchor boxes to be the predicted region proposals



Non-maxima Suppression Algorithm
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• Input: 9000 anchor boxes
• Input: 100 anchor boxes as region proposals
• Algorithm: 

• (1) Choose anchor box (A) with a maximum value of 
foreground  probability

• (2) Add anchor box A to the output set
• (3) Remove A and a set of anchor boxes in input set which 

has IoU value with A > 0.5
• (4) Check if input set is empty or output set is equal to 100, 

then stop, otherwise repeat step 1



Intersection over Union (IoU) Metric
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• IoU in the range [0,1]
• IoU à 1 then predicted bounding box à close to the ground truth



Intersection over Union (IoU) Metric
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• Example of IoU metric 



Faster R-CNN vs. Fast R-CNN vs. R-CNN
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YOLO
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Redmon, Joseph, et al. "You only look once: Unified, real-time object 
detection." CVPR (2016)

For each cell of the S x S predict:
• B boxes and confidence scores C (5 x B values) + classes c   



YOLO
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For each cell of the S x S predict:
• B boxes and confidence scores C (5 x B values) + classes c   



YOLO
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Final detections: Cj * prob(c) > threshold



YOLO
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• After ImageNet pretraining, the whole network is trained end-to-end
• The loss is a weighted sum of different regressions:



RetinaNet

43

Single stage detector with:
• Multiple scales through a Feature Pyramid Network
• Focal loss to manage imbalance between background and real objects

See this link for more information: https://towardsdatascience.com/review-
retinanet-focal-loss-object-detection-38fba6afabe4



Image Segmentation
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Output a class map for each pixel 
(here: dog vs background)



Image Segmentation
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• Instance segmentation: specify each object instance as 
well (two dogs have different instances)

• This can be done through object detection + 
segmentation



Image Segmentation
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Object detection vs. Image segmentation
• Shape of the object is not important in object 

detection



Why care about image segmentation
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Shape of cancer cell is very helpful in supporting doctors in cancer diagnosis



Types of image segmentation
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• Semantic segmentation: perform segmentation on each class
• Instance segmentation: perform segmentation on each object 

of the class
• à Depend on the problem to apply semantic or instance 

segmentation



Convolutionize

49

• Slide the network with an input of (224, 224) over a large image. Output of 
varying spatial size

• Convolutionize: change Dense (4096, 1000) to 1 x 1 convolution, with 4096 
input and 1000 output channels

• Give a coarse segmentation (no extra supervision) 



Fully Convolutional Network
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• Predict / backpropagate for every output pixel
• Aggregate maps from several convolutions at different scales for more robust 

results



Deconvolution
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• Deconvolution: transposed convolutions 



Deconvolution
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• Skip connections between corresponding convolution and deconvolution 
layers

• sharper masks by using precise spatial information (early layers)
• better object detection by using semantic information (late layers)



U-Net for semantic segmentation
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• The left part of U-Net is called encoder part
• The right part of U-Net is called decoder part



U-Net for semantic segmentation
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• Each blue box corresponds to a multi-channel feature map
• # of channel is denoted on top of the box
•  width and height are denoted at the lower left edge of the box



U-Net for semantic segmentation
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• White boxes represent copied feature maps
• The arrows denote different operations



Mask R-CNN
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• Faster-RCNN architecture with a third, binary mask head



More Study
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Go to this website to study more if you prefer:
• https://paperswithcode.com/area/computer-vision
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