University of Science and Technology of Hanoi		Date: 24/10/2025	
***		Academic year: 2024–	-2025 Time : 75 minutes
Final Examination Subject: Algorithms and Data Structures Code: 02 No of pages: 02		 Important instructions 1. Only the course slides and your own exercises' code are allowed. 2. Copy or using Internet will lead to heavy penalty. 	
Department	ICT	Lecturer (or Head of Subject)	Dr. Đoàn Nhật Quang
Student name		Student's ID	

Question 1: (8pts)

We want to compute a division between two integers (*divisor is different from 0*) using only subtraction and recursion as follows:

$$div(a,b) = \begin{cases} remainder = a & if \ a < b \\ quotient = quotient + 1, div(a - b, b) \end{cases}$$

For example: quotient and remainder = 0 at the beginning

- div(10,3) = (quotient = 1, div(10-3,3)) = (quotient = 2, div (7-3,3)) = (quotient = 3, div(4-3,3))
- $\operatorname{div}(1,3) = (\operatorname{remainder} = 1)$
- Result: quotient = 3 and remainder = 1.

Note: Use pointers to update the quotient and remainder in the recursive function. You can use the following declaration: int div(int *q, int *r, int a, int b).

- Implement this recursive division algorithm in C/C++. (6 pts)
- Calculate the complexity of your algorithm. Justify your answer. (2 pts)

Question 2: (8 pts)

Let a **priority queue** of elements be defined as follows:

```
typedef struct {
   int data;
   int priority; // possible values: [0 .. 5]
} Element;
typedef struct {
   int size;
   Element data[100];
}Queue;
```

In this queue:

• Elements with higher priority values (smaller numbers) are placed at the front whenever a new element is added.

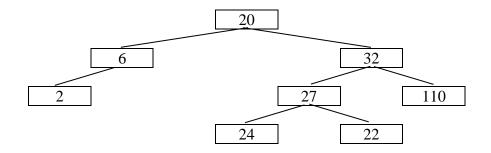
• Initial Queue:

Data: 30 | Priority: 1 Data: 25 | Priority: 3

• After **enqueue** (10, 0):

Data: 10 | Priority: 0 Data: 30 | Priority: 1 Data: 25 | Priority: 3

• The dequeue operation removes the front element (i.e., the element with the highest priority).


You have to implement the following functions in C/C++:

- Implement a function init() to initialize the queue and create an initial queue with at least six elements of your choice (data, priority).
- Implement the enquene() and dequeue() functions and other basic functions (init(), display(), etc.)
- Write a main () function to test all the above functions.

Question 3: (4 pts)

This problem requires you to traverse and display a Binary Search Tree (BST) level by level (from top to bottom, left to right) using a queue. The traversal process is as follows:

- Start from the root node.
- Insert the root into a queue.
- While the queue is not empty:
 - Dequeue the front element.
 - o Display its value.
 - Enqueue its left and right children (if they exist).
- Show the traversal process and the final result. Justify your answer (2pts).
- Propose another traversal method to get the result sorted from the largest to the smallest values. (2pts)

