The Task of Text
Classification

Logistic
Regression

s this spam?

Dear Sir,
Please find attached the forms you requested.

Special Note: Student needs to provide the hand signed
forms on the very first day of registration- (Forms
attached)

IMPORTANT NOTE:

We will be needing additional bank statements and
proof for justification if students have completed
education outside their home state.(Legitimate
documents- electricity bill, Rental Agreement, Bank
Statement, College /University ID)

Please feel free to reach us in case any queries arise.
Study Abroad Partners

Who wrote which Federalist Papers?

o M hvch friom Lo Vs lin
"“?’7‘;414 s w o Samilt

A COLLECTION

1787-8: essays anonymously written by:
Alexander Hamilton, James Madison, and John Jay

to convince New York to ratify U.S Constitution

Authorship of 12 of the letters unclear between:

Alexander Hamilton James Madison
1963: solved by Mosteller and Wallace using Bayesian methods

Wikimedia commons

Positive or negative movie review?

&) unbelievably disappointing

Full of zany characters and richly applied satire, and
some great plot twists

é) this is the greatest screwball comedy ever filmed

% It was pathetic. The worst part about it was the
boxing scenes.

Even language modeling can be viewed as
classification!

* Let the set of classes be the words (vocabulary V)

* Predicting the next word is classifying
* the context-so-far
* into a class for each possible next word

Text Classification

Assigning subject categories, topics, or genres
Spam detection

Authorship identification (who wrote this?)
Language ldentification (is this Portuguese?)
Sentiment analysis

Language modeling (what next word does this context
expect)

Text Classification: definition

Input:
> a "document" (which can be any text) d
o a fixed set of classes Y=1{y,, V5,..., ¥/}

Output: a predicted classy € Y

The hat or circumflex notation y is used to refer to an
estimated or predicted value

Most common classification method:
Supervised Machine Learning

Training
Input:
> a fixed set of classes Y={y,, ¥,,--., V,}
> a training set of m hand-labeled inputs (x¥,y@),...., (xM,y(m)
Output:
> a learned classifier y:d =2y

Inference or Test
Input: a document d
Output: aclass y

Supervised Machine Learning for Classification

Many kinds of classifiers!
* Logistic regression (this lecture)
* Naive Bayes
* Neural networks
* k-nearest neighbors
* LLMs
* Fine-tuned as classifiers
* Prompted to give a classification

The Task of Text
Classification

Logistic
Regression

Logistic Regression
Classification

Logistic
Regression

Logistic Regression

Important analytic tool in natural and
social sciences

Baseline supervised machine learning
tool for classification

Is also the foundation of neural
networks

Components of a probabilistic machine learning
classifier

Given m input/output pairs (x"y®):

1. A feature representation of the input. For each input
observation x') a vector of features [X1, Xy, ..., X,]. Feature j
for input x"is x;, more completely x, or sometimes f;(x).

2. A classification function that computes J, the estimated
class, via p(y|x), like the sigmoid or softmax functions.

An objective function for learning, like cross-entropy loss.

4. An algorithm for optimizing the objective function: stochastic
gradient descent.

The two phases of logistic regression

Training (next lecture): we learn weights w and b using
stochastic gradient descent and cross-entropy loss.

Test (also called inference) (this lecture): Given a test
example x we compute p(y|x) using learned weights w
and b, and return whichever label (y =1 or y = 0) has
higher probability

Binary Classification in Logistic Regression

Given a series of input/output pairs:
o (x{) yli))
For each observation x!!

> We represent x!!) by a feature vector [x,, x,,..., X]
> We compute an output: a predicted class ! € {0,1}

Features in logistic regression

* For feature x;, weight w; tells is how important is x
° X, ="review contains ‘awesome’": w;= +10
° X, = review contains ‘abysmal’™ w;=-10
* X ="review contains ‘mediocre’™: w,=-2

LO;

oistic Regression for one observation X

Input observation: vector x =[x, x,,..., X,/

Weights: one per feature: W = [w,, w,,..., w,|
> Sometimes we call the weights6=/6,, 0,,..., 0]

Ou

tput: a predicted class y € {0,1}

(multinomial logistic regression: y € {0, 1, 2, 3, 4})

How to do classification

For each feature x;, weight w; tells us importance of x
> (Plus we'll have a bias b)

We'll sum up all the weighted features and the bias

n
Z W;X; -+ b
=1

Z = w-x+b
If this sum is high, we say y=1; if low, then y=0

N
|

But we want a probabilistic classifier

We need to formalize “sum is high”.

We'd like a principled classifier that gives us a
probability, just like Naive Bayes did

We want a model that can tell us:
p(y=1|x; ©)
p(y=0|x; ©)

The problem: zisn't a probability, it's just a
number!

2 = w-x+b

Solution: use a function of z that goes from 0 to 1

1 1

— O p— p—
Y (2) l+e 2 14exp(—2z)

The very useful sigmoid or logistic function

|[dea of logistic regression

We'll compute w-x+b

And then we’ll pass it through the
sigmoid function:

o(W-Xx+b)
And we'll just treat it as a probability

Making probabilities with sigmoids

Ply=1) = o(w-x+b)
1
1l +exp(—(w-x+b))

~
VR
<
|
=
N—"
|

1 —o(w-x+b)

1
1

l14+exp(—(w-x+b))
exp(—(w-x+Db))
l+exp(—(w-x+b))

By the way:

G(—(w-x+b))

ae
Y
<
|
-
N—"
|

l—o(w-x+b)
1
l+exp(—(w-x+b)) Because
exp(—(w-x+b)) 1—0o(x) =0(—x)
l+exp(—(w-x+b))

1

Turning a probability into a classifier

[1if P(y=1Jx)>0.5
Y~ 0 otherwise

0.5 here is called the decision boundary

||
Q
B
<
=

The probabilistic classifier P(y =1)

1.0
P(y=1)
0.8t

Turning a probability into a classifier

. [1if Py=1]x)>05 1twxtb>0
Y~ 0 otherwise ifwx+b <0

Classification in Logistic Regression

Logistic
Regression

Logistic Regression: a text example
on sentiment classification

Logistic
Regression

Sentiment example: does y=1 or y=07?

It's hokey . There are virtually no surprises , and the writing is second-rate .

So why was it so enjoyable ? For one thing, the cast is
great . Another nice touch is the music . | was overcome with the urge to get off

the couch and start dancing . It sucked me in, and it'll do the same to you.

-

-
-
-

X2—

- .
-_—" .
-_ .
-—
-—

X3—1

-_— .
-—

® -
-
-—
-
-
-_— .
-
-

It's(aokey). T here are virtually(@oJsurprises , and the ertmg 1s Gecond-rato.
So Why was 1t so@loyablfb ? For one thing , the cast 1s
). Another(niceXouch is the music (Dzvas overcome with the urge to get oft
the co\u.eh and start,danemg [t sucked @m ,qnd it'll do the same to to_foU) .

\
N
N

I/

X1:3

\
~

xs=0 xg=4.19 T

-
-

Var Definition

Value in Fig. 5.2

x; count(positive lexicon) € doc) 3

xp count(negative lexicon) € doc) 2

N { 1 if “no” € doc {
3 0 otherwise

x4 count(1st and 2nd pronouns € doc) 3

. { 1 if “!” €doc 0
. 0 otherwise

x¢ log(word count of doc) In(66)

=4.19

Classitying sentiment for input x

Var Definition Val 5.2
X1 count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
“ <(1 if “no” € doc |
| 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
- <(1 if “” € doc 0
_ 0 otherwise
x¢ log(word count of doc) In(66) =4.19

Suppose w = [2.5,—5.0,—1.2,0.5, 2'.0, 0.7]
b=0.1

Classitying sentiment for input x

p(+x) = P(Y = 1]x)

p(—|x) =P(Y

0lx)

o(w-x+b)

5([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.19]
o(.833)

70

-

l—oc(w-x+b)
0.30

0.1)

We can build features for logistic regression for
any classification task: period disambiguation

End of sentence
This ends in a perio ~ \
The house at 465 Main S@'s ne\@

Not end

if “Case(w;) = Lower”
otherwise

\N /7

O = O = OO

if “w; € AcronymDict”

otherwise

if “w; = St. & Case(w;_1) = Cap”
otherwise

\N /7

Classification in (binary) logistic regression: summary

Given:
o a set of classes: (+ sentiment,- sentiment)
o avector x of features [x1, x2, .., Xn]
> x1= count("awesome")
> x2 = log(number of words in review)

> A vector wof weights [wl, w2, .., wn]
> w; for each feature f;

P(y=1) = o(w-x+D)
1
1_|_e—(w-x-|—b)

Logistic Regression: a text example
on sentiment classification

Logistic
Regression

Learning: Cross-Entropy Loss

Logistic
Regression

Wait, where did the W’s come from?

Supervised classification:
* We know the correct label y (either O or 1) for each x.
* But what the system produces is an estimate, y

We want to set w and b to minimize the distance between our
estimate $! and the true y'.

* We need a distance estimator: a loss function or a cost
function

* We need an optimization algorithm to update w and b to
minimize the loss.

Learning components

A loss function:
> cross-entropy loss

An optimization algorithm:
> stochastic gradient descent

The distance between y and y

We want to know how far is the classifier output:
y = o(w-x+b)

from the true output:
y |= either O or 1]}

We'll call this difference:
L(y ,y) = how much y differs from the true y

Intuition of negative log likelihood loss
= cross-entropy loss

A case of conditional maximum likelihood
estimation

We choose the parameters w,b that maximize
* the log probability

* of the true y labels in the training data

* given the observations x

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can

express the probability p(y|x) from our classifier (the thing
we want to maximize) as

plylx) = 37 (1-9)"
noting:
if y=1, this simplifies to y
if y=0, this simplifiesto 1- y

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize: p(y}x) = $*(1—9)
Now take the log of both sides (mathematically handy)
Maximize: logp(ylx) = log[§” (1—35)"]
= ylogy+(1—y)log(1—7)

Whatever values maximize log p(y|x) will also maximize
p(y|x)

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize: logp(ylx) = log[* (1—5)']
= ylogy+(1—y)log(l—7)

Now flip signh to turn this into a loss: something to minimize

Cross-entropy loss (because is formula for cross-entropy(y, ¥))
Minimize: Lce(y,y) =—logp(ylx) = —[ylogy+ (1 —y)log(l—3)]

Or, plugging in definition of y:
Lce(P,y) = —[ylogo(w-x+b)+(1—y)log(l—c(w-x+b))]

Let's see if this works for our sentiment example

We want loss to be:

* smaller if the model estimate is close to correct

* bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)
It's hokey . There are virtually no surprises, and the writing is second-rate .
So why was it so enjoyable ? For one thing, the cast is great . Another nice

touch is the music . | was overcome with the urge to get off the couch and
start dancing . It sucked me in, and it'll do the same to you .

Let's see if this works for our sentiment example

True value is y=1. How well is our model doing?

p(+[x) =P(Y =1Jx) = o(w-x+b)
= o([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.19] +0.1)
= 0(.833)
— 0.70 (5.6)

Pretty welll What's the loss?

Lee(9,y) = —[ylogo(w-x+b)+ (1 —y)log(l—o(w-x+b))
— —logo(w-x+b)]
— —log(.70)
- .36

Let's see if this works for our sentiment example

Suppose true value instead was y=0.

p(—x) = P(Y =0x) = 1—0(w-x+b)

= 0.30
What's the loss?
Lce(9,y) = —[ylogo(w-x+b)+(1 —y)log(l —o(w-x+b))]
_ —log(1—o(w-x+b))]
— —log (.30)

1.2

Let's see if this works for our sentiment example

The loss when model was right (if true y=1)
Lce(9,y) = —[ylogo(w-x+b)+ (1 —y)log(l —o(w-x+b))]
—[logo(w-x+b)]
—log(.70)
— .36
Is lower than the loss when model was wrong (if true y=0):

Lee(9y) = —[ylogo(w-x+b)+(1—y)log(l —o(w-x+b))]
= —log(1 —oc(w-x+b))]
— —log(.30)
— 1.2

Sure enough, loss was bigger when model was wrong!

Cross-Entropy Loss

Logistic
Regression

Stochastic Gradient Descent

Logistic
Regression

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized
by weights 6=(w,b)

* And weé'll represent y as f (x; 6) to make the
dependence on 6 more obvious

We want the weights that minimize the loss, averaged
over all examples:

6 = argmin%ZLCE(f(X(i);Q)aY(i))
0 i=1

Intuition of gradient descent

How do | get to the bottom of this river canyon?

Look around me 360°

Find the direction of
7g steepest slope down

(}/\ Go that way

Our goal: minimize the loss

For logistic regression, loss function is convex
* A convex function has just one minimum

* Q@Gradient descent starting from any point is
guaranteed to find the minimum

* (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Loss 4 Should we move
right or left from here?

Let's first visualize for a sin;

ole scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

A
Loss

slope of loss at Wl/

1s negative

So we'll move positive

Let's first visualize for a sin;

ole scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

A
Loss

one step
of gradient
descent

slope of loss at Wl//'

1s negative

So we'll move positive

Gradients

The gradient of a function of many variables is a

vector pointing in the direction of the greatest
increase in a function.

Gradient Descent: Find the gradient of the loss
function at the current point and move in the
opposite direction.

How much do we move in that direction ?

* The value of the gradient (slope in our example)
%L(f(x; w),y) weighted by a learning rate n

* Higher learning rate means move w faster

W =L (f(xiw))

Now let's consider N dimensions

We want to know where in the N-dimensional space
(of the N parameters that make up 6) we should
move.

The gradient is just such a vector; it expresses the
directional components of the sharpest slope along
each of the N dimensions.

Imagine 2 dimensions, w and b
Cost(w,b)

Visualizing the
gradient vector at
the red point

It has two
dimensions shown
in the x-y plane

\ -, X z7
CAaneTaS. »‘.‘e’p’&‘o‘ & TP, /
"\ \.‘ \\\\:\\\‘A‘ ‘g‘?. '4."1’ ,/’ I,;
B S NS, Pl N ST 7 et
N _\f“. - - V‘l T
RS el e
- "

-~ - -
- T . .

-

\

Real gradients

Are much longer; lots and lots of weights

For each dimension w; the gradient component j
tells us the slope with respect to that variable.

> “How much would a small change in w; influence the
total loss function L?”

> We express the slope as a partial derivative 0 of the loss
ow,;

The gradient is then defined as a vector of these
partials.

The gradient

We’'ll represent y as f (x; 0) to make the dependence on 6 more
obvious: - 5 i,

WL(f(X; 9),)’)

iL f(x;0),
VgL(f(x;Q)jy)) _ dwy (()y)

S L(f(x:0),)

The final equation for updating 0 based on the gradient is thus

6.1 = 6, —nVL(f(x;0),y)

What are these partial derivatives for logistic regression?

The loss function
Lce(¥,y) = —|ylogo(w-x+b)+(1—y)log(l—o(w-x+D))]

The elegant derivative of this function (see textbook 5.8 for derivation)

aLCE(yay)
aWj

= [ow-x+b)),

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function

f 1s a function parameterized by 0
X 18 the set of training inputs x(l), x(z), e x(m)
y 1s the set of training outputs (labels) y(l), y(2>, e y(m)
60
repeat til done
For each training tuple (x{?), y()) (in random order)
1. Optional (for reportlng) # How are we doing on this tuple?
Compute $() = f(x();0) # What is our estimated output §?
Compute the loss L(y(), y(i)) # How far off is ${)) from the true output y{9)?
2. g+ VoL(f(xD;0),y) # How should we move 6 to maximize loss?
3.0-0 —ng # Go the other way 1nstead

return 6

Hyperparameters

The learning rate n is a hyperparameter
> too high: the learner will take big steps and overshoot

> too low: the learner will take too long

Hyperparameters:
* Briefly, a special kind of parameter for an ML model

* |nstead of being learned by algorithm from
supervision (like regular parameters), they are
chosen by algorithm designer.

Stochastic Gradient Descent

Logistic
Regression

Stochastic Gradient Descent:
An example and more details

Logistic
Regression

Working through an example

One step of gradient descent
A mini-sentiment example, where the true y=1 (positive)

Two features:
X, =3 (count of positive lexicon words)

X, =2 (count of negative lexicon words)

Assume 3 parameters (2 weights and 1 bias) in @% are zero:
w,=w,=b =0
n=0.1

Example of gradient descent
w,=w,=b =0;
Update step for update 6 is: X, =3; X, =2
011 = 6, —MVL(f(x;0),y)

where OLEFY) _ 5w x+b) — y]x;
8Wj

Gradient vector has 3 dimensions:

B aLCE(yay) i
a 8W€
Lcg (Y,
Vb = ce(J,y)

ow
aLCE é\’y)
ob

Example of gradient descent
w,=w,=b =0;
Update step for update 6 is: X, =3; X, =2
011 = 6, —MVL(f(x;0),y)

where OLEFY) _ 5w x+b) — y]x;
8Wj

Gradient vector has 3 dimensions:

B aLCE(yay) i
a 8W€
L y, _
Vb = ce(J,y)

ow
aLCE é\’y)
ob

Example of gradient descent
w,=w,=b =0;
Update step for update 6 is: X, =3; X, =2
011 = 6, —MVL(f(x;0),y)

where OLEFY) _ 5w x+b) — y]x;
8Wj

Gradient vector has 3 dimensions:

~ JdLce(9,y) T _ _
Sigf 21 [(o(wx+b)—y)n
Vb = aLSEVy’y) = | (6(w-x+D)—y)x
aLCgIEZyA,y) i G(w-x+b) —y

Example of gradient descent
w,=w,=b =0;
Update step for update 6 is: X, =3; X, =2
011 = 6, —MVL(f(x;0),y)

where OLEFY) _ 5w x+b) — y]x;
8Wj

Gradient vector has 3 dimensions:

- JLcg(P,y) T _ _ _ _
Swol] [(elwrtn)—yn] [(o0 -1
Vi = | 20 | = | (o(w-x+b) =y)x | = | (0(0)~ 1)x,
3chl§yAJ) _G(w-x+b)—y | _G(O)—l

Example of gradient descent
w,=w,=b =0;
Update step for update 6 is: X, =3; X, =2
011 = 6, —MVL(f(x;0),y)

where OLEFY) _ 5w x+b) — y]x;
aWj

Gradient vector has 3 dimensions:

B aLCE (yay>]

&W& - (o(w-x+b)—y)x1 | (0(0) —1)x; | - —0.5x1 1.5
Vs = aLSEVW) = | (cwx+b)—y)xy | = | (6(0)=1)xp | = | —05x | = | —1.0
Lcs (5.) o(w-x+b)—y c(0)—1 —0.5 —0.5

Lo 4 -5 - -5 -

Example of gradient descent

- JLcg (D) T

8w<1A (oc(w-x+b)—y)x1 | [(6(0)—1)x - —0.5x;] [—1.57
Vw,b — aLC&Evyjy) — (G(W -x—|—b) —y)xz — ((0) —) — | =05 | =1| —1.0
9chl§ﬁ,y) o(w-x+b)—y ' oc0)—-1 | |-05 | | —-05]

Now that we have a gradient, we compute the new parameter vector
6! by moving 6° in the opposite direction from the gradient:

6,1 = 6,—nVL(f(x;0),y) n=0.1;

ol =

Example of gradient descent

- JLcg (D) T

8w<1A C(oc(w-x+b)—y)x1 | [(6(0)—1)x - —0.5x;] [—1.57
Vw,b — aLC&Evyjy) — (G(W -x—|—b) —y)xz — ((0) —) — | =05 | =1| —1.0
9chl§ﬁ,y) o(w-x+b)—y ' oc0)—-1 | |-05 | | —-05]

Now that we have a gradient, we compute the new parameter vector
6! by moving 6° in the opposite direction from the gradient:

6,1 = 6,—nVL(f(x;0),y) n=0.1;

Wi —1.5
91: wy | — 1 —1.0
b 0.5

Example of gradient descent

- JLcg (D) T

8w<1A C(oc(w-x+b)—y)x1 | [(6(0)—1)x - —0.5x;] [—1.57
Vw,b — BLSEVy’y) — (G(W -x—|—b) —y)x2 — ((0) —) — | =05 | =1| —1.0
9chl§ﬁ,y) o(w-x+b)—y ' oc0)—-1 | |-05 | | —-05]

Now that we have a gradient, we compute the new parameter vector
6! by moving 6° in the opposite direction from the gradient:

6,1 = 6,—nVL(f(x;0),y) n=0.1;
W 151 [.15°
o' =|wy | -n| 10| =11
b | | -05| |05

Example of gradient descent

- 0 - _ _ _ _ _ _

LSE%{ 2 (6w-x+b) —yx] [(6(0)—1)x _0.5x, 15

Vw,b — aL(aﬂiVy’y) = (G(W -x—|—b) —y)x2 = ((0)) = | —05x | = | —1.0
achlfy,y> o(w-x+b) - 5(0) - 05 | | -05

Now that we have a gradient, we compute the new parameter vector
6! by moving 6° in the opposite direction from the gradient:

611 = 6, —nVL(f(x;0),y) n=0.1;
Wy - —15] [.15
91 = | w2 [—1N —1.0| =1 .1
_b _ _—().5_ _.05_
Note that enough negative examples would eventually make w, negative

Mini-batch training

Stochastic gradient descent chooses a single
random example at a time.

That can result in choppy movements

More common to compute gradient over batches of
training instances.

Batch training: entire dataset
Mini-batch training: m examples (512, or 1024)

Stochastic Gradient Descent:
An example and more details

Logistic
Regression

Text Precision, Recall, and F1
Classification

and Naive

Bayes

Evaluating Classifiers: How well does our
classiftier work?

Let's first address binary classifiers:
* |s this email spam?

spam (+) or notspam (-)
* |s this post about Delicious Pie Company?
about Del. Pie Co (+) or not about Del. Pie Co(-)

We'll need to know
1. What did our classifier say about each email or post?

2. What should our classifier have said, i.e., the correct
answer, usually as defined by humans ("gold label")

First step in evaluation: The confusion matrix

gold standard labels

gold positive gold negative

system ~ System
positive
output

labels ~ System
negative

Accuracy on the confusion matrix

gold standard labels

gold positive gold negative

system ~ System
positive
output

labels ~ System
negative

tp+tn
tp+p+tn+in

accuracy =

Why don't we use accuracy?

Accuracy doesn't work well when we're dealing with
uncommon or imbalanced classes

Suppose we look at 1,000,000 social media posts to find
Delicious Pie-lovers (or haters)

* 100 of them talk about our pie
* 999,900 are posts about something unrelated

Imagine the following simple classifier

Every post is "not about pie"

ACCU [d Cy re. p IS pOStS 100 posts are about pie; 999,900 aren't

gold standard labels

gold positive gold negative

system o e
system pgsitive true positive | false positive
output

t : ;
labels nseygsafir\l]le false negative | true negative

tp+tn
tp+p+tn+in

accuracy =

Why don't we use accuracy?

Accuracy of our "nothing is pie" classifier
999,900 true negatives and 100 false negatives
Accuracy is 999,900/1,000,000 = 99.99%!
But useless at finding pie-lovers (or haters)!!
Which was our goal!

Accuracy doesn't work well for unbalanced classes

Most tweets are not about pie!

Instead of accuracy we use precision and recall

gold standard labels
gold positive gold negative
system SySffe.m o e o e o o _ tp
Oyu ot positive | true positive | false positive _I_)_r_e_c_l_sf(_)fl____tR ey

t . -
labels nsggsafils,le false negative | true negative

tp+tn
tp+Hp+tn+in

p
tp+fn

| | |
| | |
recall = i - accuracy =
| | |
| | |

Precision: % of selected items that are correct

Recall: % of correct items that are selected

Precision/Recall aren't fooled by the"just call
everything negative" classifier!

Stupid classifier: Just say no: every tweet is "not about pie"
* 100 tweets talk about pie, 999,900 tweets don't
* Accuracy = 999,900/1,000,000 = 99.99%

But the Recall and Precision for this classifier are terrible:

true positives
true positives + false negatives

Recall =

true positives
true positives + false positives

Precision =

A combined measure: F1

F1is a combination of precision and recall.

~ 2PR
 P+R

F

F1 is a special case of the general "F-measure”

F-measure is the (weighted) harmonic mean of
precision and recall

| n
HarmonicMean(ay,a,a3,a4,...,ay) = 11 1
di | an | a3 | —I_a
| | —« *+1)PR
F=— 1 or(withﬁ2:—> FZ('B;_)
ap+(1-0)z “ PP+ R

F1 is a special case of F-measure with B=1, a=%

Suppose we have more than 2 classes?

Lots of text classification tasks have more than two classes.

o Sentiment analysis (positive, negative, neutral) , named entities (person, location, organization)

We can define precision and recall for multiple classes like this 3-way email task:

gold labels
urgent normal spam
8
weent] 8 | 10 | 1| preeision” 7o
Ssystem . 60
outpur hormal 5 60 50 precisionn= ————
_______ 200
pam | 3| 30 | 200 precision”s55om,

recallu= recalln =§recalls =
8 60 1 200

8+5+3 10+60+30 1+50+200

How to combine P/R values for different classes:
Microaveraging vs Macroaveraging

Class 1: Urgent Class 2: Normal Class 3: Spam Pooled
true true true true true true true true
urgent not normal not spam not yes no
system system system system
1}1/1' ent 8 11 n}grma] 60 55 }s, am 200 33 Y es 268 99
g p Yy
system system system system
Yot | 8 1340 Yot | 40 212 Yot | 51| 83 e | 99 1635
60 200 :
precision = ——= 42 precision= —— =52 precision= —— =8¢ croaverage _ 208 _ 73
8+1 60+55 200+33 precision 268+99

macroaverage _ A42+.52+.86
precision 3

Text Precision, Recall, and F1
Classification

and Naive

Bayes

Text Avoiding Harms in Classification

Classification
and Naive
Bayes

Harms of classification

Classifiers, like any NLP algorithm, can cause harms

This is true for any classifier, whether Naive Bayes or
other algorithms

Representational Harms

* Harms caused by a system that demeans a social group
* Such as by perpetuating negative stereotypes about them.

* Kiritchenko and Mohammad 2018 study

* Examined 200 sentiment analysis systems on pairs of sentences

* |dentical except for names:
 common African American (Shaniqua) or European American (Stephanie).

* Like "I talked to Shaniqua yesterday" vs "l talked to Stephanie yesterday"

* Result: systems assigned lower sentiment and more negative
emotion to sentences with African American names

* Downstream harm:
* Perpetuates stereotypes about African Americans

* African Americans treated differently by NLP tools like sentiment (widely
used in marketing research, mental health studies, etc.)

Harms of Censorship

Toxicity detection is the text classification task of detecting hate speech,
abuse, harassment, or other kinds of toxic language.

Widely used in online content moderation

Toxicity classifiers incorrectly flag non-toxic sentences that simply
mention minority identities (like the words "blind" or "gay")

women (Park et al., 2018),
disabled people (Hutchinson et al., 2020)
gay people (Dixon et al., 2018; Oliva et al., 2021)

Downstream harms:
Censorship of speech by disabled people and other groups

Speech by these groups becomes less visible online

Writers might be nudged by these algorithms to avoid these words
making people less likely to write about themselves or these groups.

Performance Disparities

1. Text classifiers perform worse on many languages of
the world due to lack of data or labels

2. Text classifiers perform worse on varieties of even

high-resource languages like English
* Example task: language identification, a first step in NLP
pipeline ("ls this post in English or not?")
* English language detection performance worse for writers
who are African American (Blodgett and O'Connor 2017)

or from India (Jurgens et al., 2017)

Harms in text classification

* Causes:
* |ssues in the data; NLP systems amplify biases in training data
* Problems in the labels
* Problems in the algorithms (like what the model is trained to
optimize)

* Prevalence: The same problems occur throughout NLP
(including large language models)

* Solutions: There are no general mitigations or solutions
* But harm mitigation is an active area of research

* And there are standard benchmarks and tools that we can use
for measuring some of the harms

Text Avoiding Harms in Classification

Classification
and Naive
Bayes

