
Logistic
Regression

The Task of Text
Classification

Is this spam?
Dear Sir,
Please find attached the forms you requested.
Special Note: Student needs to provide the hand signed
forms on the very first day of registration- (Forms
attached)
IMPORTANT NOTE:
We will be needing additional bank statements and
proof for justification if students have completed
education outside their home state.(Legitimate
documents- electricity bill, Rental Agreement, Bank
Statement, College/University ID)
Please feel free to reach us in case any queries arise.
Study Abroad Partners

Who wrote which Federalist Papers?

1787-8: essays anonymously written by:
 Alexander Hamilton, James Madison, and John Jay

to convince New York to ratify U.S Constitution
Authorship of 12 of the letters unclear between:

1963: solved by Mosteller and Wallace using Bayesian methods
James MadisonAlexander Hamilton

Wikimedia commons

Positive or negative movie review?

unbelievably disappointing

Full of zany characters and richly applied satire, and
some great plot twists

this is the greatest screwball comedy ever filmed

It was pathetic. The worst part about it was the
boxing scenes.

4

Even language modeling can be viewed as
classification!

• Let the set of classes be the words (vocabulary V)
• Predicting the next word is classifying
• the context-so-far
• into a class for each possible next word

Text Classification

Assigning subject categories, topics, or genres
Spam detection
Authorship identification (who wrote this?)
Language Identification (is this Portuguese?)
Sentiment analysis
Language modeling (what next word does this context
expect)

Text Classification: definition

Input:
◦ a "document" (which can be any text) d
◦ a fixed set of classes Y = {y1, y2,…, yJ}

Output: a predicted class ŷ Î Y

The hat or circumflex notation ŷ is used to refer to an
estimated or predicted value

Most common classification method:
Supervised Machine Learning

Training
Input:

◦ a fixed set of classes Y = {y1, y2,…, yJ}
◦ a training set of m hand-labeled inputs (x(1),y(1)),....,(x(m),y(m))

Output:
◦ a learned classifier γ:d à ŷ

Inference or Test
Input: a document d
Output: a class ŷ

8

Supervised Machine Learning for Classification

Many kinds of classifiers!
• Logistic regression (this lecture)
• Naive Bayes
• Neural networks
• k-nearest neighbors
• LLMs
• Fine-tuned as classifiers
• Prompted to give a classification

Logistic
Regression

The Task of Text
Classification

Logistic
Regression

Logistic Regression
Classification

Logistic Regression

Important analytic tool in natural and
social sciences
Baseline supervised machine learning
tool for classification
Is also the foundation of neural
networks

Components of a probabilistic machine learning
classifier

1. A feature representation of the input. For each input
observation x(i), a vector of features [x1, x2, ... , xn]. Feature j
for input x(i) is xj, more completely xj(i), or sometimes fj(x).

2. A classification function that computes !𝑦, the estimated
class, via p(y|x), like the sigmoid or softmax functions.

3. An objective function for learning, like cross-entropy loss.
4. An algorithm for optimizing the objective function: stochastic

gradient descent.

Given m input/output pairs (x(i),y(i)):

The two phases of logistic regression

Training (next lecture): we learn weights w and b using
stochastic gradient descent and cross-entropy loss.

Test (also called inference) (this lecture): Given a test
example x we compute p(y|x) using learned weights w
and b, and return whichever label (y = 1 or y = 0) has
higher probability

Binary Classification in Logistic Regression

Given a series of input/output pairs:
◦ (x(i), y(i))

For each observation x(i)
◦ We represent x(i) by a feature vector [x1, x2,…, xn]
◦ We compute an output: a predicted class !𝑦(i) Î {0,1}

Features in logistic regression

• For feature xi, weight wi tells is how important is xi
• xi ="review contains ‘awesome’": wi = +10
• xj ="review contains ‘abysmal’": wj = -10
• xk =“review contains ‘mediocre’": wk = -2

Logistic Regression for one observation x

Input observation: vector x = [x1, x2,…, xn]
Weights: one per feature: W = [w1, w2,…, wn]
◦ Sometimes we call the weights θ = [θ1, θ2,…, θn]

Output: a predicted class !𝑦 Î {0,1}

(multinomial logistic regression: !𝑦 Î {0, 1, 2, 3, 4})

How to do classification

For each feature xi, weight wi tells us importance of xi
◦ (Plus we'll have a bias b)

We'll sum up all the weighted features and the bias

If this sum is high, we say y=1; if low, then y=0

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

But we want a probabilistic classifier

We need to formalize “sum is high”.
We’d like a principled classifier that gives us a
probability, just like Naive Bayes did
We want a model that can tell us:

p(y=1|x; θ)
p(y=0|x; θ)

The problem: z isn't a probability, it's just a
number!

Solution: use a function of z that goes from 0 to 1

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

5.1 • CLASSIFICATION: THE SIGMOID 3

sentiment” versus “negative sentiment”, the features represent counts of words in a
document, P(y = 1|x) is the probability that the document has positive sentiment,
and P(y = 0|x) is the probability that the document has negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature
is to the classification decision, and can be positive (providing evidence that the in-
stance being classified belongs in the positive class) or negative (providing evidence
that the instance being classified belongs in the negative class). Thus we might
expect in a sentiment task the word awesome to have a high positive weight, and
abysmal to have a very negative weight. The bias term, also called the intercept, isbias term

intercept another real number that’s added to the weighted inputs.
To make a decision on a test instance— after we’ve learned the weights in

training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

It is nearly linear around 0 but outlier values get squashed toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z =
1

1+ exp(�z)
(5.4)

(For the rest of the book, we’ll use the notation exp(x) to mean ex.) The sigmoid
has a number of advantages; it takes a real-valued number and maps it into the range

The very useful sigmoid or logistic function

21

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

Idea of logistic regression

We’ll compute w∙x+b
And then we’ll pass it through the
sigmoid function:
 σ(w∙x+b)
And we'll just treat it as a probability

Making probabilities with sigmoids

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

By the way:

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

=

Because

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

Turning a probability into a classifier

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

0.5 here is called the decision boundary

The probabilistic classifier

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

wx + b

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

P(y=1)

Turning a probability into a classifier

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

if w∙x+b > 0
if w∙x+b ≤ 0

Logistic
Regression

Classification in Logistic Regression

Logistic
Regression

Logistic Regression: a text example
on sentiment classification

Sentiment example: does y=1 or y=0?

It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
great . Another nice touch is the music . I was overcome with the urge to get off
the couch and start dancing . It sucked me in , and it'll do the same to you .

30

31

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions

4 CHAPTER 5 • LOGISTIC REGRESSION

nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability P(y =
1|x). How do we make a decision? For a test instance x, we say yes if the probability
P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.

Classifying sentiment for input x

32

4 CHAPTER 5 • LOGISTIC REGRESSION

nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability P(y =
1|x). How do we make a decision? For a test instance x, we say yes if the probability
P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

Suppose w =

b = 0.1

Classifying sentiment for input x

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions

33

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions

We can build features for logistic regression for
any classification task: period disambiguation

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.15

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

a feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.15]+0.1)
= s(1.805)
= 0.86

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.14

Logistic regression is commonly applied to all sorts of NLP tasks, and any prop-
erty of the input can be a feature. Consider the task of period disambiguation:
deciding if a period is the end of a sentence or part of a word, by classifying each
period into one of two classes EOS (end-of-sentence) and not-EOS. We might use
features like x1 below expressing that the current word is lower case and the class
is EOS (perhaps with a positive weight), or that the current word is in our abbrevia-
tions dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A
feature can also express a quite complex combination of properties. For example a
period following a upper cased word is a likely to be an EOS, but if the word itself is
St. and the previous word is capitalized, then the period is likely part of a shortening
of the word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training or dev set. of an early version of a system often
provides insights into features.

34

This ends in a period.
The house at 465 Main St. is new.

End of sentence

Not end

Classification in (binary) logistic regression: summary
Given:

◦ a set of classes: (+ sentiment,- sentiment)
◦ a vector x of features [x1, x2, …, xn]

◦ x1= count("awesome")
◦ x2 = log(number of words in review)

◦ A vector w of weights [w1, w2, …, wn]
◦ wi for each feature fi

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

Logistic
Regression

Logistic Regression: a text example
on sentiment classification

Logistic
Regression

Learning: Cross-Entropy Loss

Wait, where did the W’s come from?

Supervised classification:
• We know the correct label y (either 0 or 1) for each x.
• But what the system produces is an estimate, !𝑦	
We want to set w and b to minimize the distance between our
estimate !𝑦(i) and the true y(i).
• We need a distance estimator: a loss function or a cost

function
• We need an optimization algorithm to update w and b to

minimize the loss.
38

Learning components

A loss function:
◦ cross-entropy loss

An optimization algorithm:
◦ stochastic gradient descent

The distance between !𝑦	and y

We want to know how far is the classifier output:
 !𝑦	= σ(w·x+b)

from the true output:
 y [= either 0 or 1]

We'll call this difference:
 L(!𝑦	,y) = how much !𝑦 differs from the true y

Intuition of negative log likelihood loss
 = cross-entropy loss

A case of conditional maximum likelihood
estimation
We choose the parameters w,b that maximize
• the log probability
• of the true y labels in the training data
• given the observations x

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Since there are only 2 discrete outcomes (0 or 1) we can
express the probability p(y|x) from our classifier (the thing
we want to maximize) as

noting:
 if y=1, this simplifies to !𝑦	
 if y=0, this simplifies to 1- !𝑦	

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right

Deriving cross-entropy loss for a single observation x

Now take the log of both sides (mathematically handy)

Whatever values maximize log p(y|x) will also maximize
p(y|x)

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right

Goal: maximize probability of the correct label p(y|x)
Maximize:

Maximize:

Deriving cross-entropy loss for a single observation x

Now flip sign to turn this into a loss: something to minimize
Cross-entropy loss (because is formula for cross-entropy(y, !𝑦))

Or, plugging in definition of !𝑦:

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right

Goal: maximize probability of the correct label p(y|x)

Maximize:

Minimize:

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right

Let's see if this works for our sentiment example
We want loss to be:
• smaller if the model estimate is close to correct
• bigger if model is confused
Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Let's see if this works for our sentiment example

True value is y=1. How well is our model doing?

Pretty well! What's the loss?

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions

8 CHAPTER 5 • LOGISTIC REGRESSION

side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE(f (x(i);q),y(i)) (5.13)

Let's see if this works for our sentiment example

Suppose true value instead was y=0.

What's the loss?

8 CHAPTER 5 • LOGISTIC REGRESSION

side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE(f (x(i);q),y(i)) (5.13)

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions

Let's see if this works for our sentiment example
The loss when model was right (if true y=1)

Is lower than the loss when model was wrong (if true y=0):

Sure enough, loss was bigger when model was wrong!

8 CHAPTER 5 • LOGISTIC REGRESSION

side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE(f (x(i);q),y(i)) (5.13)

8 CHAPTER 5 • LOGISTIC REGRESSION

side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE(f (x(i);q),y(i)) (5.13)

Logistic
Regression

Cross-Entropy Loss

Logistic
Regression

Stochastic Gradient Descent

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized
by weights 𝛳=(w,b)
• And we’ll represent !𝑦	as f (x; θ) to make the

dependence on θ more obvious
We want the weights that minimize the loss, averaged
over all examples:

8 CHAPTER 5 • LOGISTIC REGRESSION

side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE(f (x(i);q),y(i)) (5.13)

Intuition of gradient descent

How do I get to the bottom of this river canyon?

x

Look around me 360∘

Find the direction of
steepest slope down
Go that way

Our goal: minimize the loss

For logistic regression, loss function is convex
• A convex function has just one minimum
• Gradient descent starting from any point is

guaranteed to find the minimum
• (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

(goal)

Should we move
 right or left from here?

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

slope of loss at w1
is negative

(goal)

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

So we'll move positive

Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

slope of loss at w1
is negative

(goal)

one step
of gradient

descent

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

So we'll move positive

Gradients

The gradient of a function of many variables is a
vector pointing in the direction of the greatest
increase in a function.

Gradient Descent: Find the gradient of the loss
function at the current point and move in the
opposite direction.

How much do we move in that direction ?

• The value of the gradient (slope in our example)
!
!"
𝐿(𝑓 𝑥;𝑤 , 𝑦) weighted by a learning rate η

• Higher learning rate means move w faster

10 CHAPTER 5 • LOGISTIC REGRESSION

example):

wt+1 = wt �h d
dw

L(f (x;w),y) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

Now let's consider N dimensions

We want to know where in the N-dimensional space
(of the N parameters that make up θ) we should
move.
The gradient is just such a vector; it expresses the
directional components of the sharpest slope along
each of the N dimensions.

Imagine 2 dimensions, w and b

Visualizing the
gradient vector at
the red point
It has two
dimensions shown
in the x-y plane

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

Real gradients

Are much longer; lots and lots of weights
For each dimension wi the gradient component i
tells us the slope with respect to that variable.

◦ “How much would a small change in wi influence the
total loss function L?”

◦ We express the slope as a partial derivative ∂ of the loss
∂wi

The gradient is then defined as a vector of these
partials.

The gradient

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

We’ll represent !𝑦	as f (x; θ) to make the dependence on θ more
obvious:

The final equation for updating θ based on the gradient is thus

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

What are these partial derivatives for logistic regression?

The loss function

5.4 • GRADIENT DESCENT 11

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(m)

y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.

5.4 • GRADIENT DESCENT 11

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(m)

y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.

The elegant derivative of this function (see textbook 5.8 for derivation)

5.4 • GRADIENT DESCENT 11

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(m)

y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.

Hyperparameters

The learning rate η is a hyperparameter
◦ too high: the learner will take big steps and overshoot
◦ too low: the learner will take too long

Hyperparameters:
• Briefly, a special kind of parameter for an ML model
• Instead of being learned by algorithm from

supervision (like regular parameters), they are
chosen by algorithm designer.

Logistic
Regression

Stochastic Gradient Descent

Logistic
Regression

Stochastic Gradient Descent:
An example and more details

Working through an example

One step of gradient descent
A mini-sentiment example, where the true y=1 (positive)
Two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Assume 3 parameters (2 weights and 1 bias) in Θ0 are zero:
w1 = w2 = b = 0
η = 0.1

Example of gradient descent
Update step for update θ is:

 where

Gradient vector has 3 dimensions:

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

w1 = w2 = b = 0;
x1 = 3; x2 = 2

5.4 • GRADIENT DESCENT 11

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(m)

y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.

Example of gradient descent
Update step for update θ is:

 where

Gradient vector has 3 dimensions:

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

w1 = w2 = b = 0;
x1 = 3; x2 = 2

5.4 • GRADIENT DESCENT 11

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(m)

y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.

Example of gradient descent
Update step for update θ is:

 where

Gradient vector has 3 dimensions:

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

w1 = w2 = b = 0;
x1 = 3; x2 = 2

5.4 • GRADIENT DESCENT 11

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(m)

y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.

Example of gradient descent
Update step for update θ is:

 where

Gradient vector has 3 dimensions:

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

w1 = w2 = b = 0;
x1 = 3; x2 = 2

5.4 • GRADIENT DESCENT 11

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(m)

y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.

Example of gradient descent
Update step for update θ is:

 where

Gradient vector has 3 dimensions:

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

w1 = w2 = b = 0;
x1 = 3; x2 = 2

5.4 • GRADIENT DESCENT 11

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(m)

y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.

Example of gradient descent

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

η = 0.1;

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

Now that we have a gradient, we compute the new parameter vector
θ1 by moving θ0 in the opposite direction from the gradient:

Example of gradient descent

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

η = 0.1;

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

Now that we have a gradient, we compute the new parameter vector
θ1 by moving θ0 in the opposite direction from the gradient:

Example of gradient descent

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

η = 0.1;

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

Now that we have a gradient, we compute the new parameter vector
θ1 by moving θ0 in the opposite direction from the gradient:

Example of gradient descent

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

η = 0.1;

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

Now that we have a gradient, we compute the new parameter vector
θ1 by moving θ0 in the opposite direction from the gradient:

Note that enough negative examples would eventually make w2 negative

Mini-batch training

Stochastic gradient descent chooses a single
random example at a time.
That can result in choppy movements
More common to compute gradient over batches of
training instances.
Batch training: entire dataset
Mini-batch training: m examples (512, or 1024)

Logistic
Regression

Stochastic Gradient Descent:
An example and more details

Text
Classification
and Naive
Bayes

Precision, Recall, and F1

Evaluating Classifiers: How well does our
classifier work?

Let's first address binary classifiers:
• Is this email spam?

spam (+) or not spam (-)

• Is this post about Delicious Pie Company?
about Del. Pie Co (+) or not about Del. Pie Co(-)

We'll need to know
1. What did our classifier say about each email or post?
2. What should our classifier have said, i.e., the correct

answer, usually as defined by humans ("gold label")

First step in evaluation: The confusion matrix

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall =
tp

tp+fn

precision =
tp

tp+fp

accuracy =
tp+tn

tp+fp+tn+fn

Accuracy on the confusion matrix

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall =
tp

tp+fn

precision =
tp

tp+fp

accuracy =
tp+tn

tp+fp+tn+fn

Why don't we use accuracy?
Accuracy doesn't work well when we're dealing with
uncommon or imbalanced classes
Suppose we look at 1,000,000 social media posts to find
Delicious Pie-lovers (or haters)
• 100 of them talk about our pie
• 999,900 are posts about something unrelated

Imagine the following simple classifier
 Every post is "not about pie"

Accuracy re: pie posts

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall =
tp

tp+fn

precision =
tp

tp+fp

accuracy =
tp+tn

tp+fp+tn+fn

100 posts are about pie; 999,900 aren't

Why don't we use accuracy?
Accuracy of our "nothing is pie" classifier
 999,900 true negatives and 100 false negatives
 Accuracy is 999,900/1,000,000 = 99.99%!
 But useless at finding pie-lovers (or haters)!!
 Which was our goal!
Accuracy doesn't work well for unbalanced classes
 Most tweets are not about pie!

Instead of accuracy we use precision and recall

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall =
tp

tp+fn

precision =
tp

tp+fp

accuracy =
tp+tn

tp+fp+tn+fn

Precision: % of selected items that are correct
Recall: % of correct items that are selected

Precision/Recall aren't fooled by the"just call
everything negative" classifier!

Stupid classifier: Just say no: every tweet is "not about pie"
• 100 tweets talk about pie, 999,900 tweets don't
• Accuracy = 999,900/1,000,000 = 99.99%

But the Recall and Precision for this classifier are terrible:

12 CHAPTER 4 • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

12 CHAPTER 4 • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

A combined measure: F1

F1 is a combination of precision and recall.

12 CHAPTER 4 • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

F1 is a special case of the general "F-measure"

F-measure is the (weighted) harmonic mean of
precision and recall

F1 is a special case of F-measure with β=1, α=½

12 CHAPTER 4 • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

12 CHAPTER 4 • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

Suppose we have more than 2 classes?

Lots of text classification tasks have more than two classes.
◦ Sentiment analysis (positive, negative, neutral) , named entities (person, location, organization)

We can define precision and recall for multiple classes like this 3-way email task:

8
5

10
60

urgent normal
gold labels

system
output

recallu =
8

8+5+3

precisionu=
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls =

precisionn=
60

5+60+50

precisions=
200

3+30+200

60
10+60+30

200
1+50+200

How to combine P/R values for different classes:
Microaveraging vs Macroaveraging

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Text
Classification
and Naive
Bayes

Precision, Recall, and F1

Text
Classification
and Naive
Bayes

Avoiding Harms in Classification

Harms of classification
Classifiers, like any NLP algorithm, can cause harms
This is true for any classifier, whether Naive Bayes or
other algorithms

Representational Harms
• Harms caused by a system that demeans a social group

• Such as by perpetuating negative stereotypes about them.

• Kiritchenko and Mohammad 2018 study
• Examined 200 sentiment analysis systems on pairs of sentences
• Identical except for names:
• common African American (Shaniqua) or European American (Stephanie).
• Like "I talked to Shaniqua yesterday" vs "I talked to Stephanie yesterday"

• Result: systems assigned lower sentiment and more negative
emotion to sentences with African American names

• Downstream harm:
• Perpetuates stereotypes about African Americans
• African Americans treated differently by NLP tools like sentiment (widely

used in marketing research, mental health studies, etc.)

Harms of Censorship
• Toxicity detection is the text classification task of detecting hate speech,

abuse, harassment, or other kinds of toxic language.
• Widely used in online content moderation

• Toxicity classifiers incorrectly flag non-toxic sentences that simply
mention minority identities (like the words "blind" or "gay")
• women (Park et al., 2018),
• disabled people (Hutchinson et al., 2020)
• gay people (Dixon et al., 2018; Oliva et al., 2021)

• Downstream harms:
• Censorship of speech by disabled people and other groups
• Speech by these groups becomes less visible online
• Writers might be nudged by these algorithms to avoid these words

making people less likely to write about themselves or these groups.

Performance Disparities

1. Text classifiers perform worse on many languages of
the world due to lack of data or labels

2. Text classifiers perform worse on varieties of even
high-resource languages like English
• Example task: language identification, a first step in NLP

pipeline ("Is this post in English or not?")
• English language detection performance worse for writers

who are African American (Blodgett and O'Connor 2017)
or from India (Jurgens et al., 2017)

Harms in text classification

• Causes:
• Issues in the data; NLP systems amplify biases in training data
• Problems in the labels
• Problems in the algorithms (like what the model is trained to

optimize)

• Prevalence: The same problems occur throughout NLP
(including large language models)
• Solutions: There are no general mitigations or solutions
• But harm mitigation is an active area of research
• And there are standard benchmarks and tools that we can use

for measuring some of the harms

Text
Classification
and Naive
Bayes

Avoiding Harms in Classification

