



Introduction to Neural Networks

Phạm Quang Nhật Minh

minhpham0902@gmail.com

December 29, 2024

Lecture outline

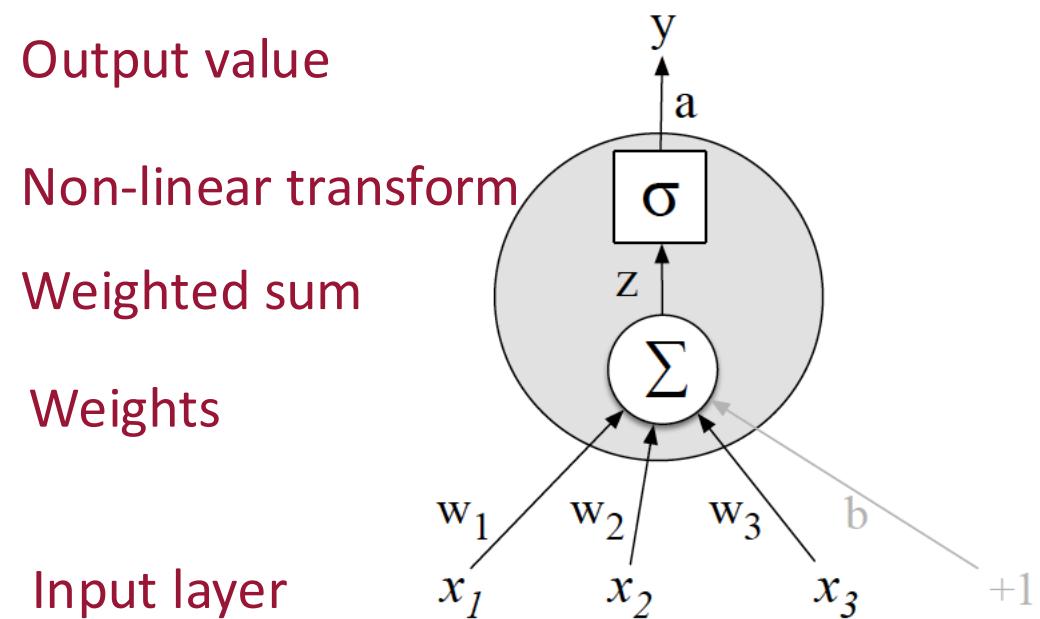
- Neural units
- The XOR problem
- Feed-Forward Neural Networks
- Training Neural Nets

Lecture outline

- Neural units
- The XOR problem
- Feed-Forward Neural Networks
- Training Neural Nets

Neural Network unit

- The building block of a neural network
 - Weight vector $w = w_1 \dots w_n$
 - Bias term b
 - Activation function f



Neural unit

5

- The building block of a neural network
 - Weight vector $w = w_1 \dots w_n$
 - Bias term b
 - Activation function f (non-linear)
- Output of a neural unit

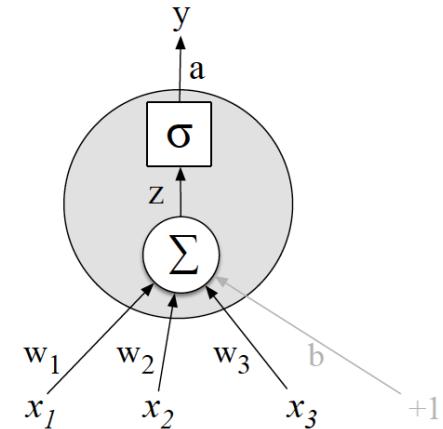
$$y = a = f(z)$$

Here:

- z is the weighted sum

$$z = \sum_i w_i x_i + b$$

$$z = w \cdot x + b$$

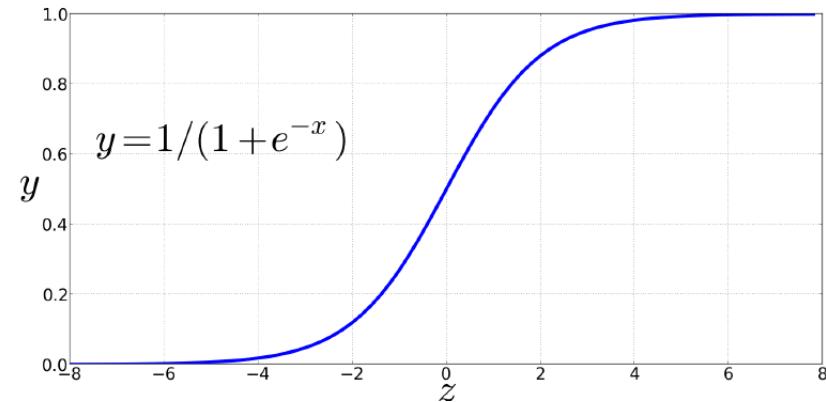


Non-Linear Activation functions

- There are many non-linear activation functions

- Sigmoid

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$



- Tanh

$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

- Rectified Linear (ReLU)

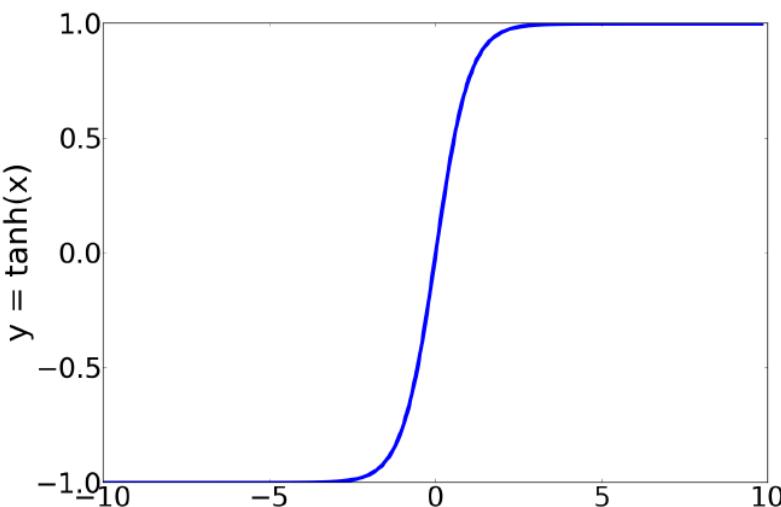
$$y = \max(x, 0)$$

- PReLU

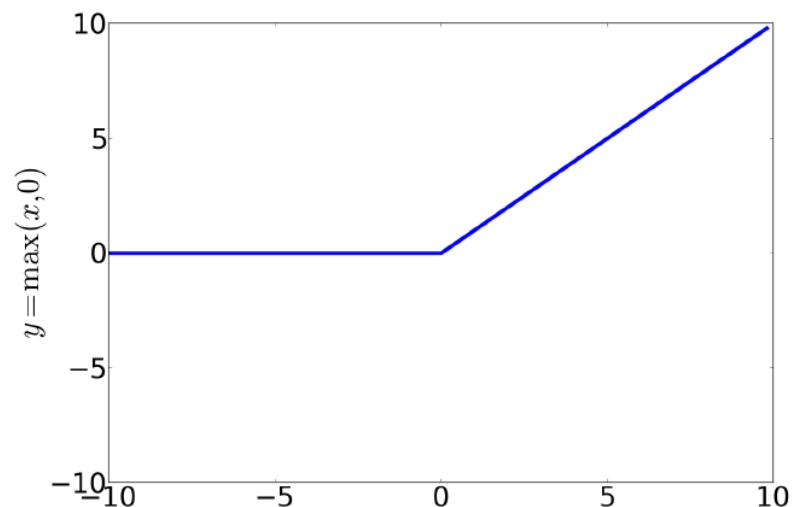
- ...

Activation functions

■ Tanh and ReLU functions



(a)



(b)

An example

Suppose a unit has:

- $w = [0.2, 0.3, 0.9]$
- $b = 0.5$

What happens with input x :

- $x = [0.5, 0.6, 0.1]$

$$y = s(w \cdot x + b) =$$

An example

Suppose a unit has:

- $w = [0.2, 0.3, 0.9]$
- $b = 0.5$

What happens with the following input x ?

- $x = [0.5, 0.6, 0.1]$

$$y = s(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}} =$$

An example

Suppose a unit has:

- $w = [0.2, 0.3, 0.9]$
- $b = 0.5$

What happens with input x :

- $x = [0.5, 0.6, 0.1]$

$$y = s(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}} =$$
$$\frac{1}{1 + e^{-(0.5 \cdot 2 + 0.6 \cdot 3 + 0.1 \cdot 9 + 0.5)}} =$$

An example

Suppose a unit has:

- $w = [0.2, 0.3, 0.9]$
- $b = 0.5$

What happens with input x :

- $x = [0.5, 0.6, 0.1]$

In Python:

```
import numpy as np
y = 1/(1+np.exp(-(np.dot(w,x) + b)))
```

$$y = s(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}} = \frac{1}{1 + e^{-(.5 \cdot 2 + .6 \cdot 3 + .1 \cdot 9 + .5)}} = \frac{1}{1 + e^{-0.87}} = .70$$

Lecture outline

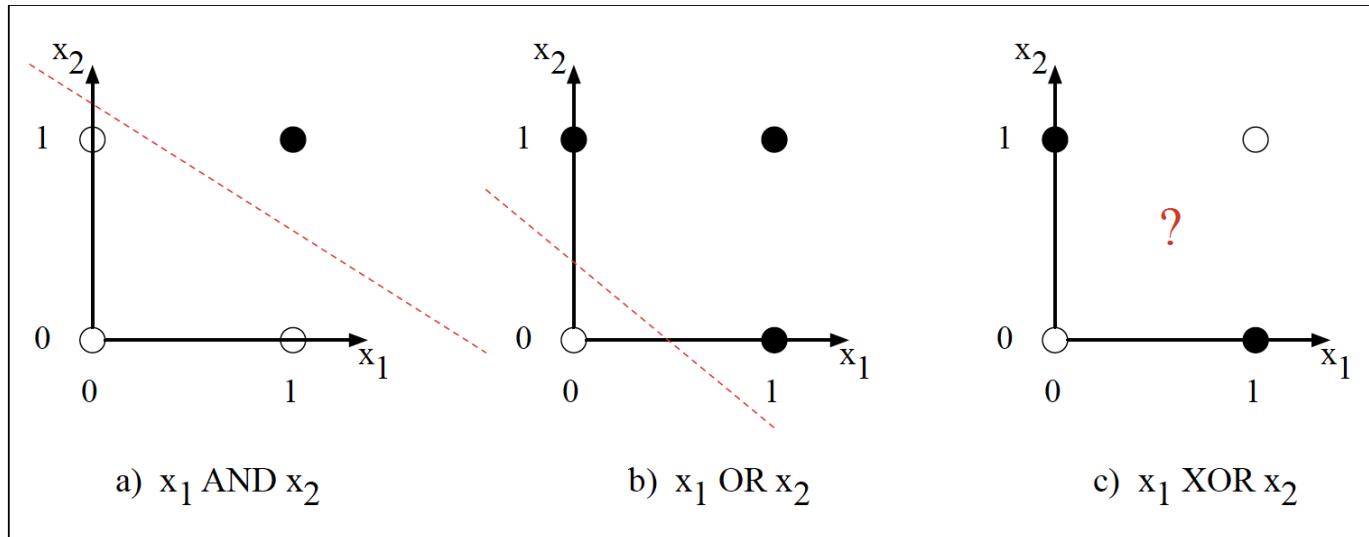
- Neural units
- The XOR problem
- Feed-Forward Neural Networks
- Training Neural Nets

Boolean functions

13

■ AND, OR, XOR functions

AND		OR		XOR	
x1	x2	y	x1	x2	y
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	0



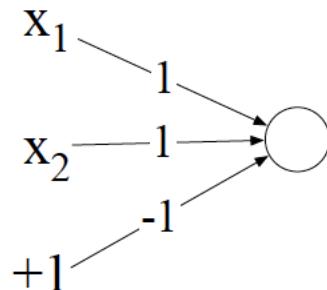
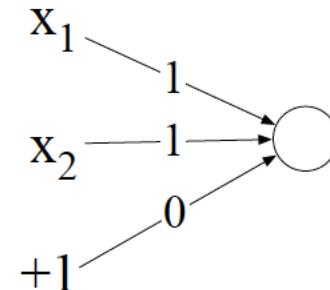
Boolean functions using Perceptron

14

- Using Perceptron to compute above functions

$$y = \begin{cases} 0, & \text{if } w \cdot x + b \leq 0 \\ 1, & \text{if } w \cdot x + b > 0 \end{cases}$$

- We can use Perceptron (a) for AND and (b) for OR

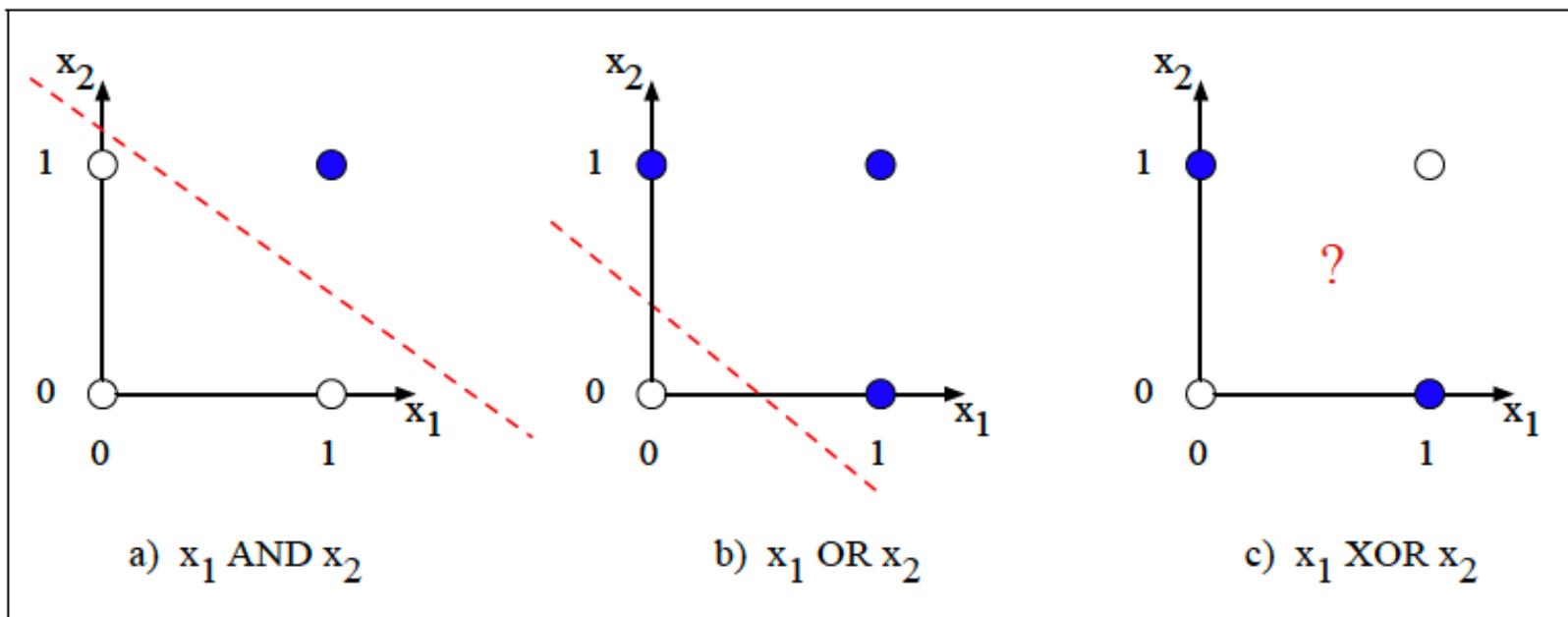


AND		OR		XOR	
x1	x2	y	x1	x2	y
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	0

The XOR problem

15

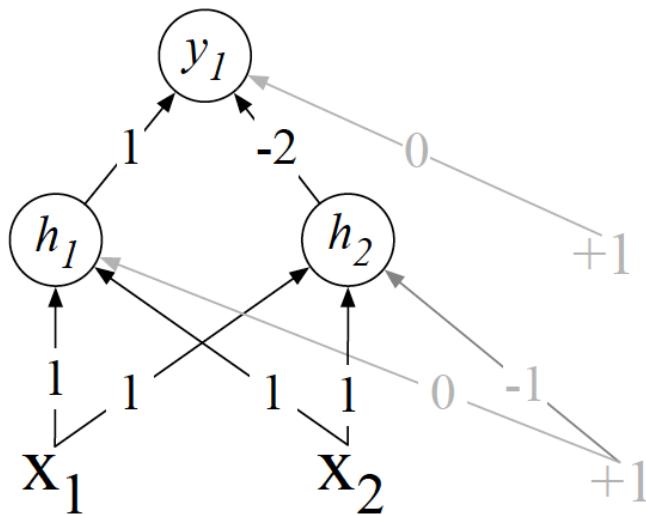
- It's not possible to build a perceptron to compute logical XOR!
- The solution: neural networks!



The solution: neural networks

16

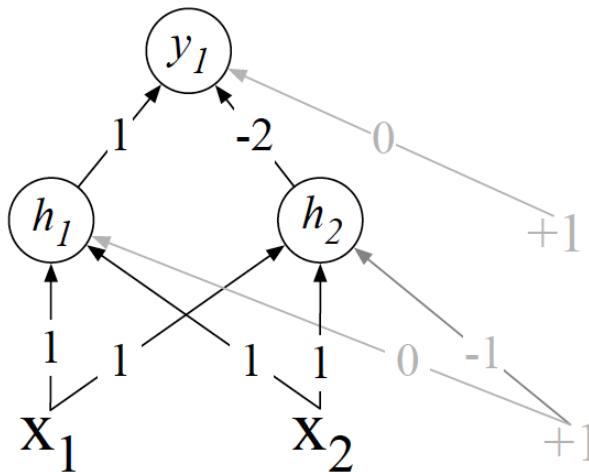
- XOR solution with two-layer neural network and ReLU activation functions



XOR		
x1	x2	y
0	0	0
0	1	1
1	0	1
1	1	0

The solution: neural networks

17



XOR

x1		x2	y
0	0	0	0
0	1	1	1
1	0	0	1
1	1	1	0

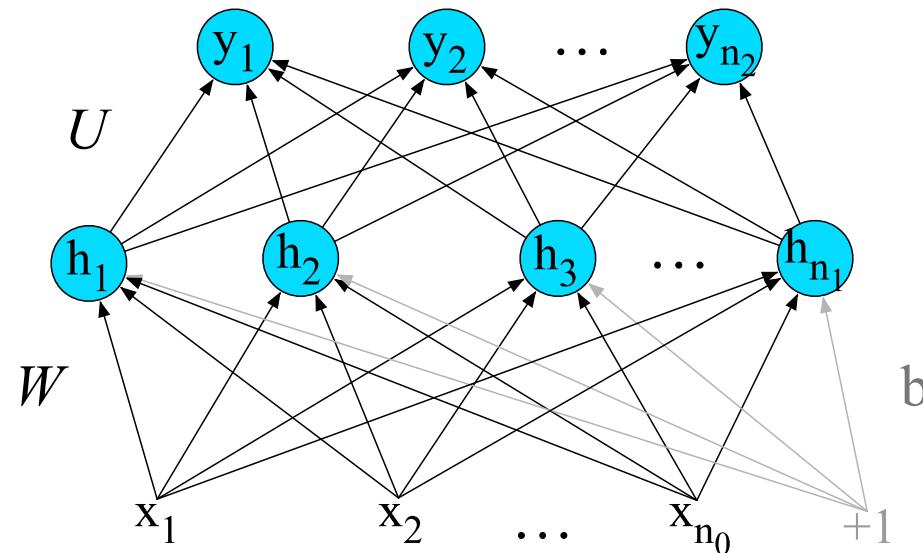
x1	x2	h1	h2	y1
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	2	1	0

Lecture outline

- Neural units
- The XOR problem
- **Feed-Forward Neural Networks**
- Training Neural Nets

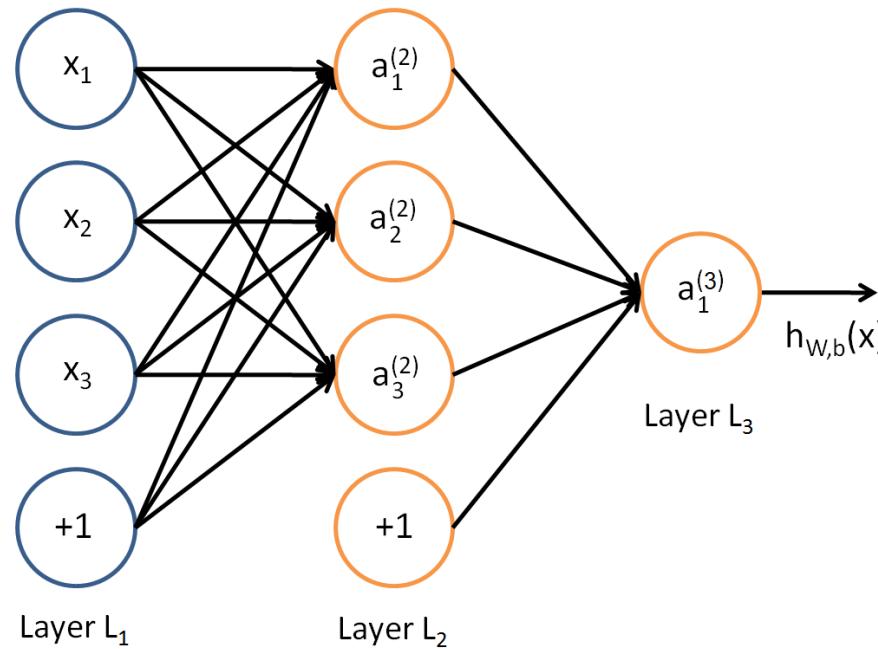
Feedforward Neural Networks

- Can also be called **multi-layer perceptrons** (or **MLPs**) for historical reasons



Feed-forward neural networks

- Simple feed-forward neural networks include:
 - Input units
 - Hidden units
 - Output units



Feed-forward neural networks

- A single hidden unit has:
 - parameters w (the weight vector) and
 - Bias term b (scalar)
- Combine weight vectors and bias terms of units into matrix W and vector \mathbf{b}

Feed-forward neural networks

- A single hidden unit has:
 - parameters w (the weight vector) and
 - Bias term b (scalar)
- Combine weight vectors and bias terms of units into matrix W and vector \mathbf{b}
- Output of the hidden layer, the vector h with sigmoid as the activation function

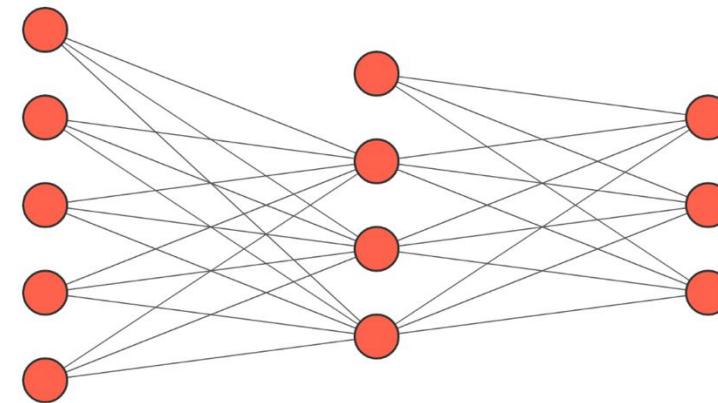
$$h = \sigma(Wx + \mathbf{b})$$

- The activation function is applied to vector element-wise
 - $g([z_1, z_2, z_3]) = [g(z_1), g(z_2), g(z_3)]$

Dimensions of vectors and matrices

23

- Input layer (layer 0): $x \in \mathbb{R}^{n_0}$
- Hidden layer (layer 1): $h \in \mathbb{R}^{n_1}$, $b \in \mathbb{R}^{n_1}$
- Weight matrix: $W \in \mathbb{R}^{n_1 \times n_0}$



Input Layer $\in \mathbb{R}^5$

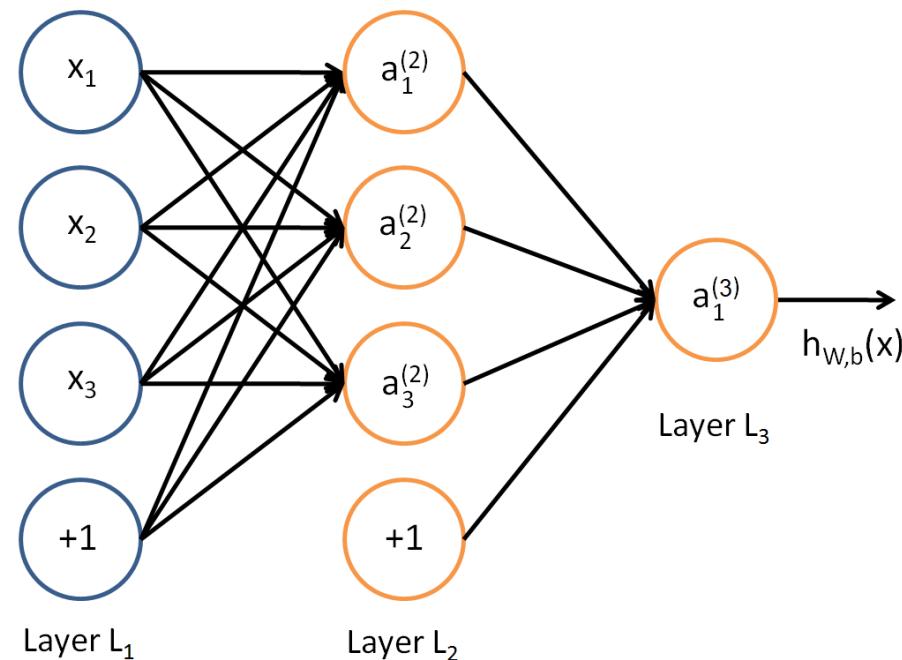
Hidden Layer $\in \mathbb{R}^4$

Output Layer $\in \mathbb{R}^3$

Output layer

24

- If we do binary classification and use sigmoid function at the output layer, we use a single output unit

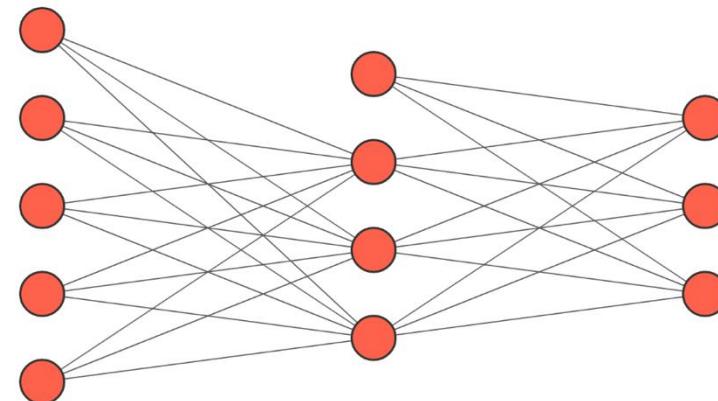


Output layer

25

- For multi-class classification, we use K units in output layer and softmax function
 - K is the number of classes

$$p(y=c|x) = \frac{e^{w_c \cdot x + b_c}}{\sum_{j=1}^k e^{w_j \cdot x + b_j}}$$



Input Layer $\in \mathbb{R}^5$

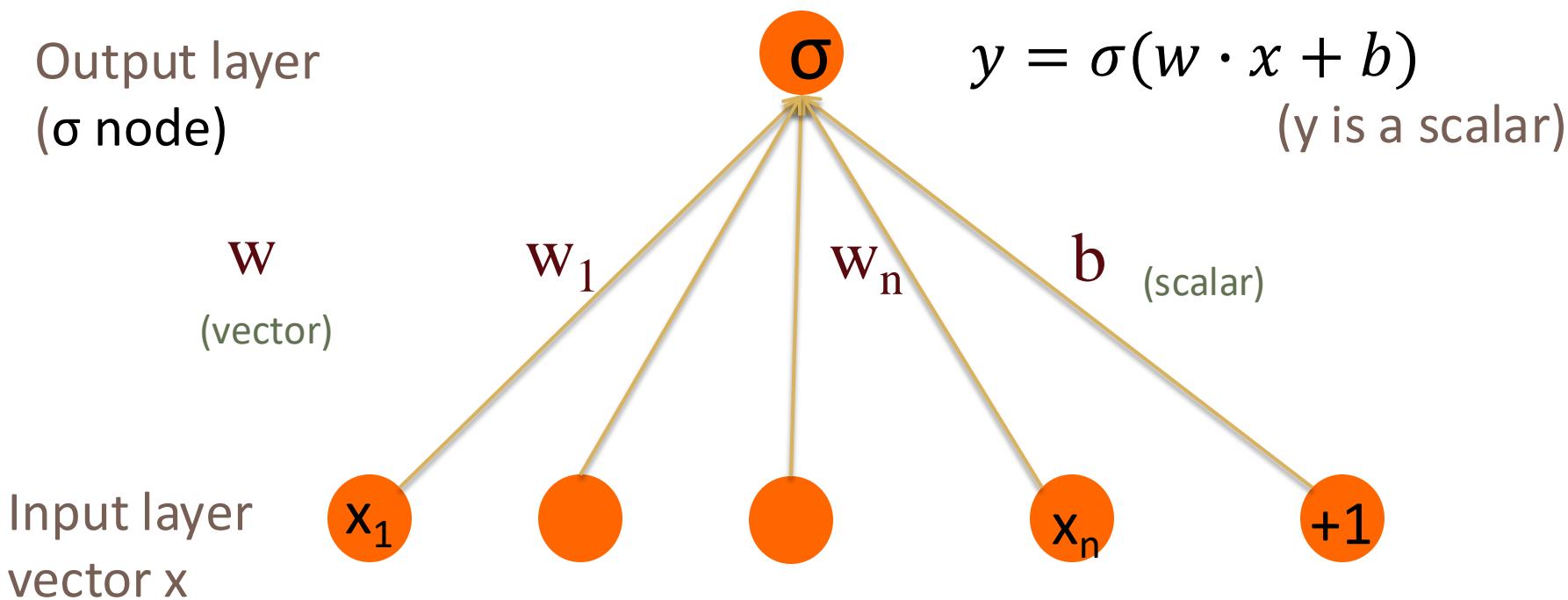
Hidden Layer $\in \mathbb{R}^4$

Output Layer $\in \mathbb{R}^3$

Binary Logistic Regression as a 1-layer Network

26

(we don't count the input layer in counting layers!)



Multinomial Logistic Regression as a 1-layer Network

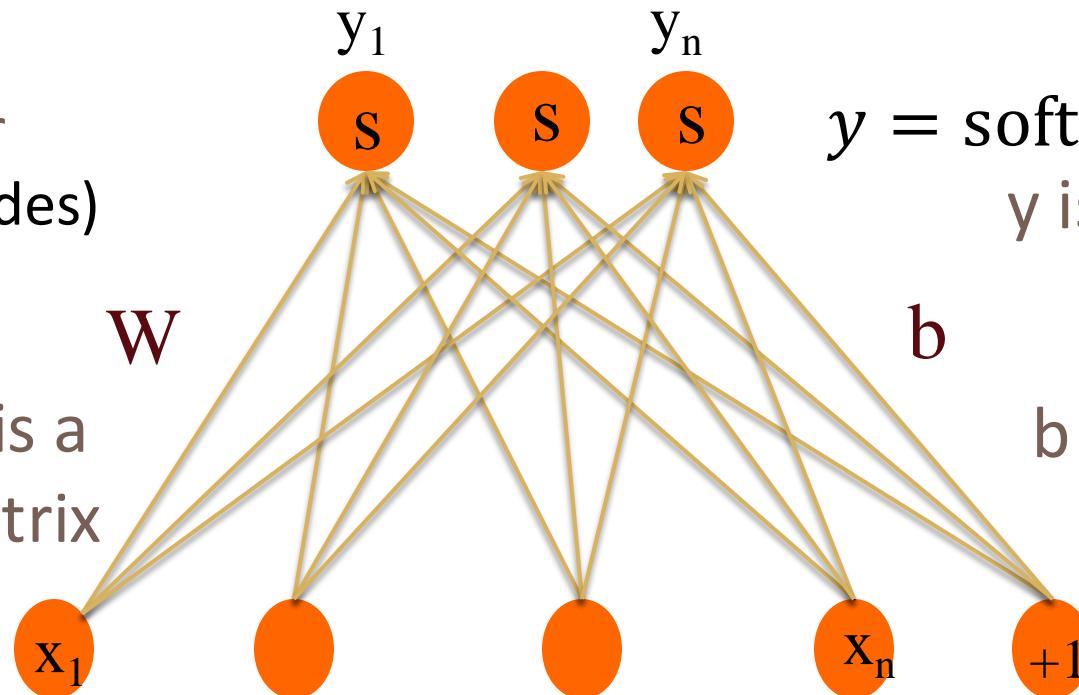
27

Fully connected single layer network

Output layer
(softmax nodes)

W
 W is a
matrix

Input layer
scalars



$$y = \text{softmax}(Wx + b)$$

y is a vector

b is a vector

Reminder: softmax: a generalization of sigmoid

- For a vector z of dimensionality k , the softmax is:

$$\text{softmax}(z) = \left[\frac{\exp(z_1)}{\sum_{i=1}^k \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^k \exp(z_i)}, \dots, \frac{\exp(z_k)}{\sum_{i=1}^k \exp(z_i)} \right]$$

- Example:

$$\text{softmax}(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^k \exp(z_j)} \quad 1 \leq i \leq k$$

$$z = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]$$

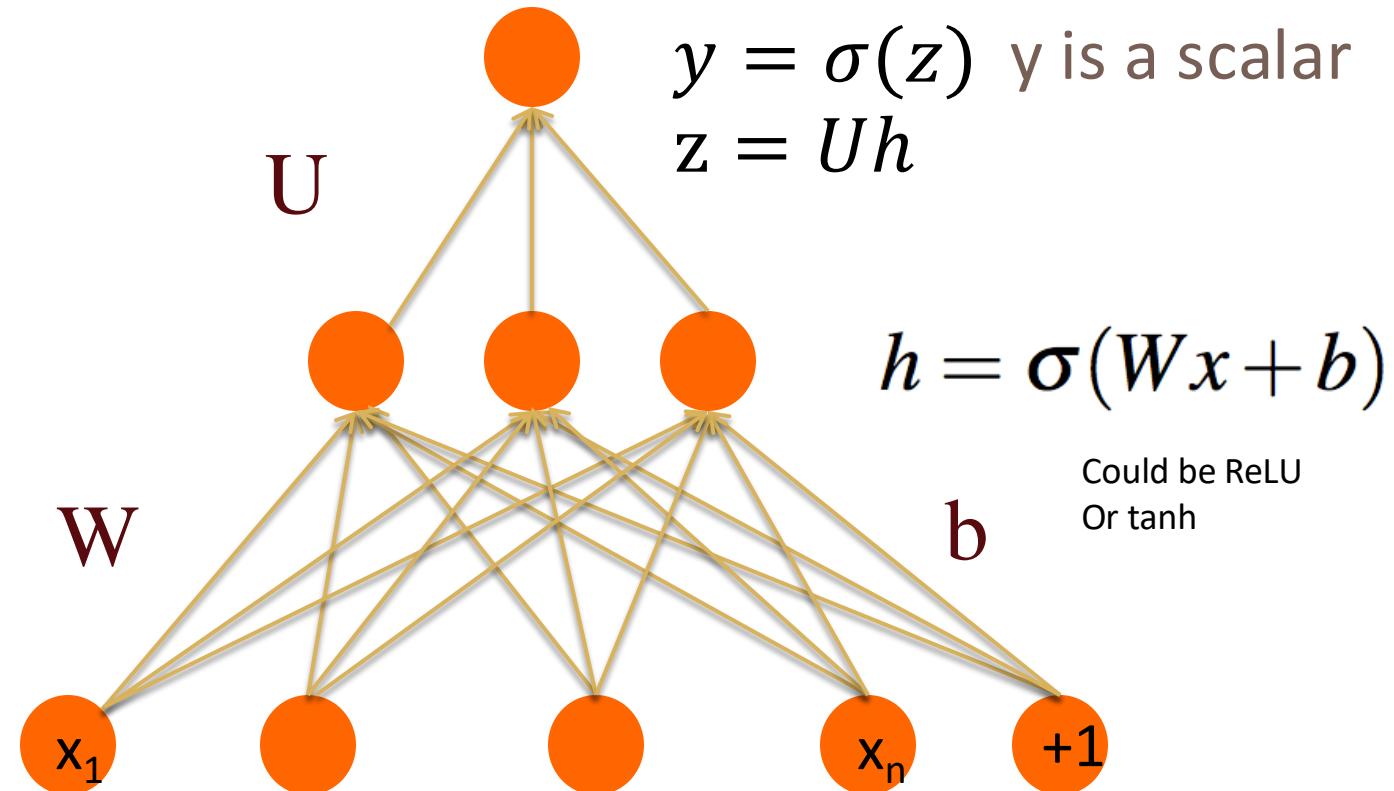
$$\text{softmax}(z) = [0.055, 0.090, 0.006, 0.099, 0.74, 0.010]$$

Two-Layer Network with scalar output

Output layer
(σ node)

hidden units
(σ node)

Input layer
(vector)

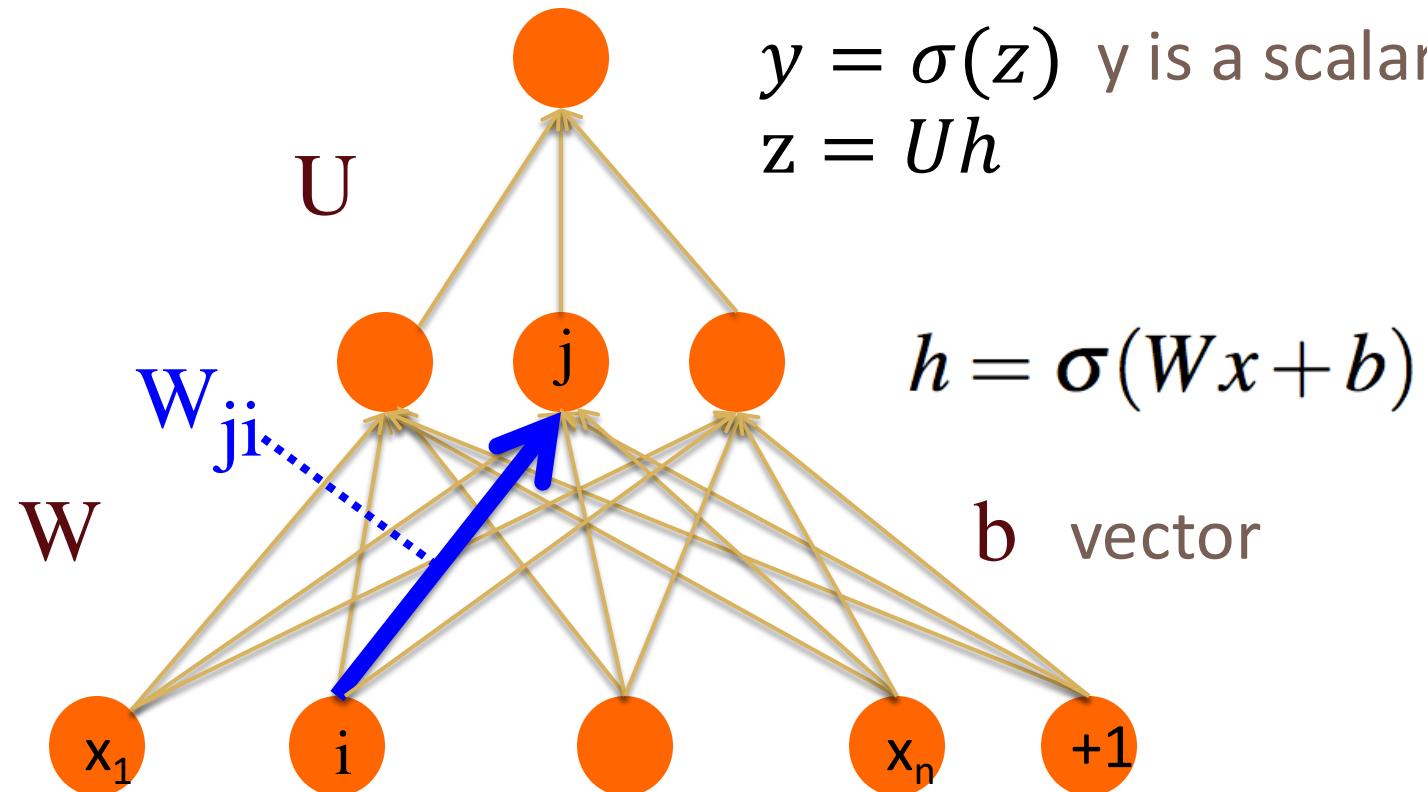


Two-Layer Network with scalar output

Output layer
(σ node)

hidden units
(σ node)

Input layer
(vector)

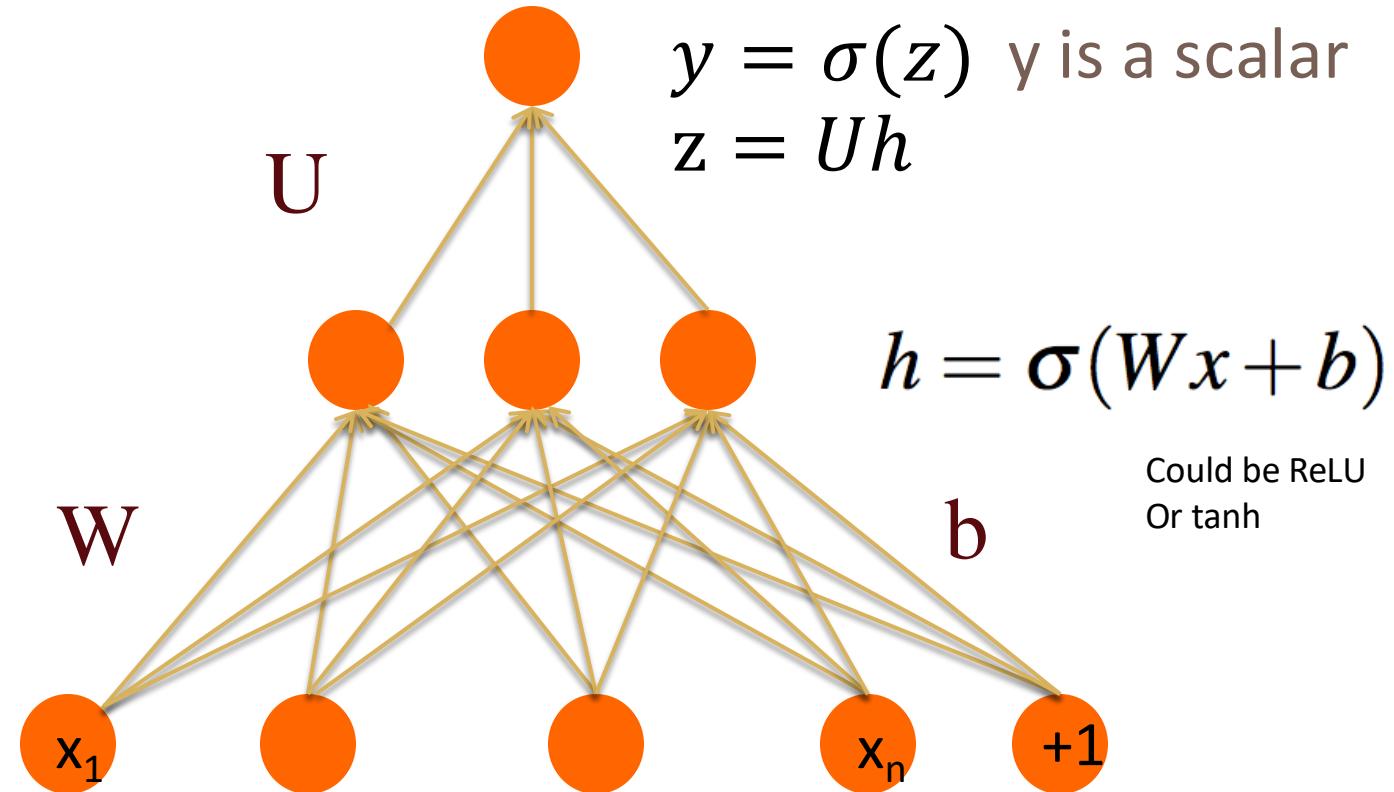


Two-Layer Network with scalar output

Output layer
(σ node)

hidden units
(σ node)

Input layer
(vector)

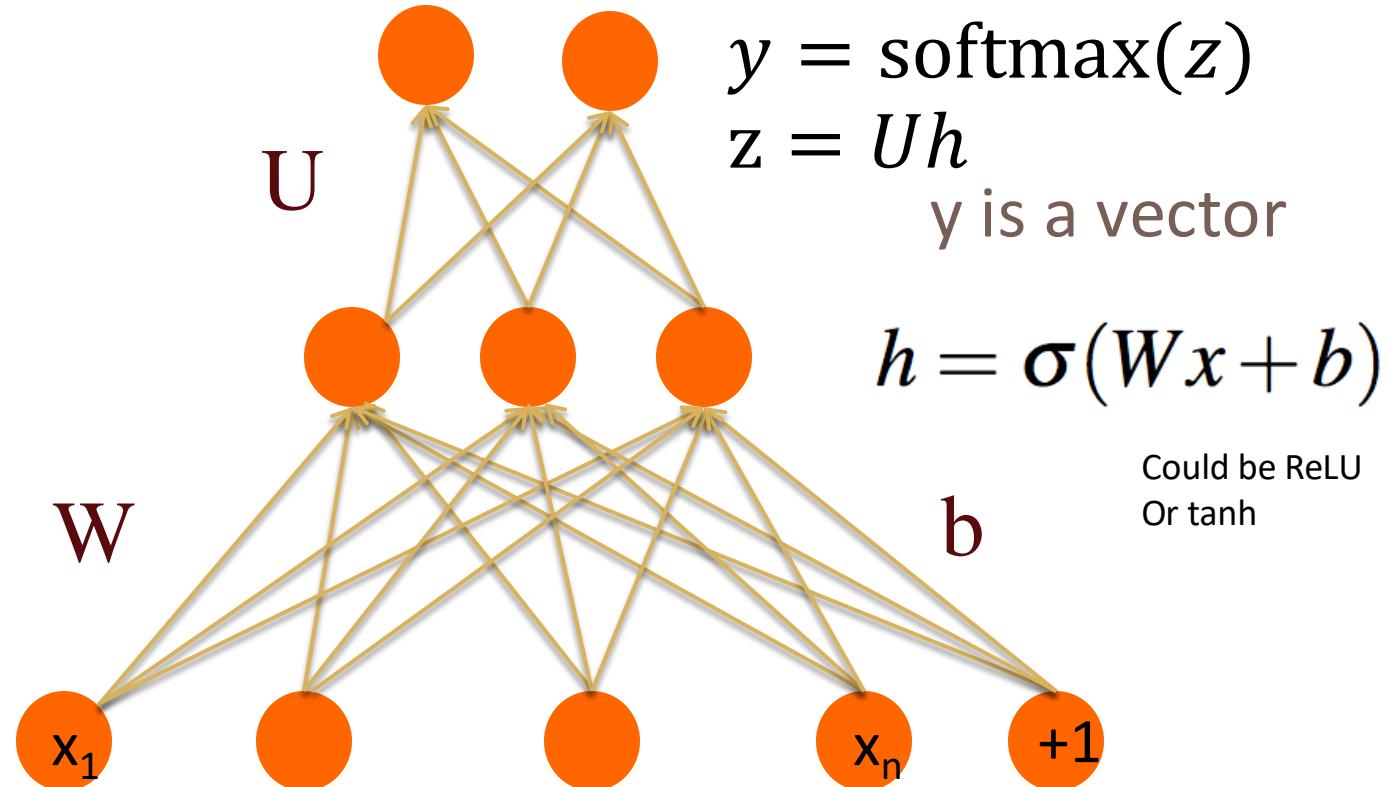


Two-Layer Network with softmax output

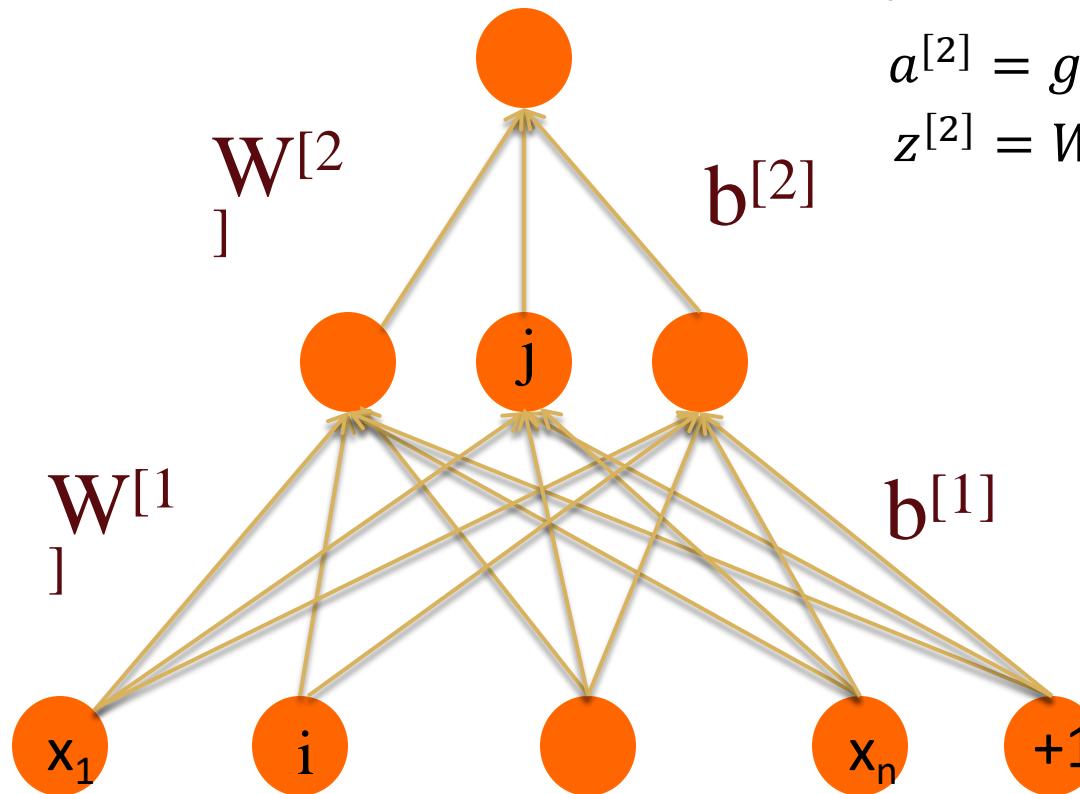
Output layer
(σ node)

hidden units
(σ node)

Input layer
(vector)



Multi-layer Notation



$$y = a^{[2]}$$

$$a^{[2]} = g^{[2]}(z^{[2]}) \quad \text{sigmoid or softmax}$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[1]} = g^{[1]}(z^{[1]}) \quad \text{ReLU}$$

$$z^{[1]} = W^{[1]}a^{[0]} + b^{[1]}$$

$$a^{[0]}$$

Multi Layer Notation

34

$$z^{[1]} = W^{[1]}a^{[0]} + b^{[1]}$$

$$a^{[1]} = g^{[1]}(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = g^{[2]}(z^{[2]})$$

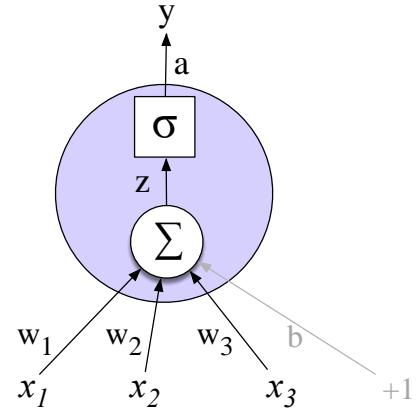
$$\hat{y} = a^{[2]}$$

for i in 1..n

$$z^{[i]} = W^{[i]} a^{[i-1]} + b^{[i]}$$

$$a^{[i]} = g^{[i]}(z^{[i]})$$

$$\hat{y} = a^{[n]}$$



Replacing the bias unit

- Let's switch to a notation without the bias unit
- Just a notational change
 - 1. Add a dummy node $a_0=1$ to each layer
 - 2. Its weight w_0 will be the bias
 - 3. So input layer $a^{[0]}_0=1$,
 - And $a^{[1]}_0=1, a^{[2]}_0=1, \dots$

Replacing the bias unit

- Instead of:
this:

$$x = x_1, x_2, \dots, x_{n0}$$

$$h = \sigma(Wx + b)$$

$$h_j = \sigma \left(\sum_{i=1}^{n_0} W_{ji} x_i + b_j \right)$$

We'll do

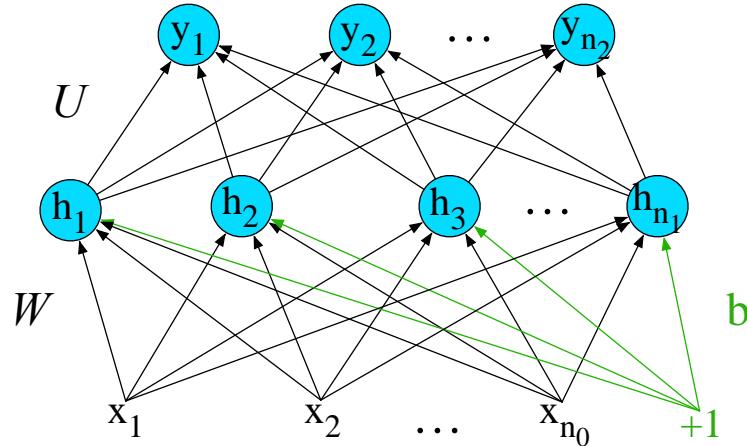
$$x = x_0, x_1, x_2, \dots, x_{n0}$$

$$h = \sigma(Wx)$$

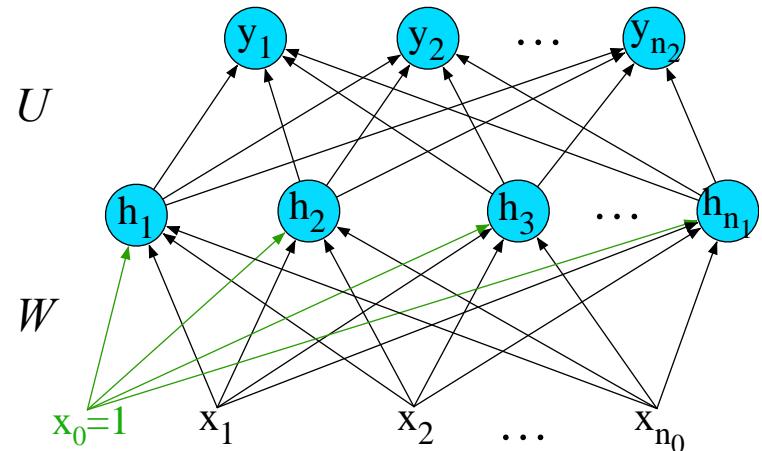
$$\sigma \left(\sum_{i=0}^{n_0} W_{ji} x_i \right)$$

Replacing the bias unit

Instead of:



We'll do this:



Lecture outline

- Neural units
- The XOR problem
- Feed-Forward Neural Networks
- Training Neural Nets

Loss function

- Binary classification with sigmoid function at the output layer
 - Cross entropy loss (same as logistic regression)

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y \log \hat{y} + (1 - y) \log(1 - \hat{y})]$$

Loss function

- Multinomial classification with softmax function

$$L_{CE}(\hat{y}, y) = - \sum_{i=1}^C y_i \log \hat{y}_i$$

- Representing y as **one-hot vector**, where true class is i

$$y_i = 1 \text{ and } y_j = 0 \quad \forall j \neq i$$

- Loss function becomes

$$L_{CE}(\hat{y}, y) = - \log \hat{y}_i = - \log \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

Computing the Gradient

- Calculate partial derivative of the loss function with respect to each parameter
- In neural networks, computing gradients for weights in layers is complicated!
- Solution: **error backpropagation**, or **backprop** (Rumelhart et al., 1986) .

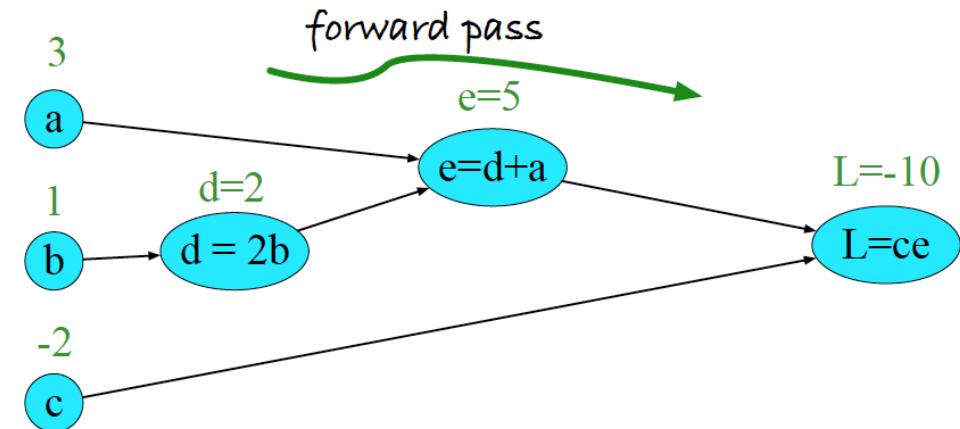
Computation graphs

- **Backpropagation** is the same as **backward differentiation**
- Backward differentiation depends on **computation graphs**

Computation graphs

43

- The computation is broken down into separate operations, each of which is modeled as a node in a graph
- Consider: $L(a, b, c) = c(a + 2b)$
 - series of computation
 - $d = 2 * b$
 - $e = a + d$
 - $L = c * e$



Backward differentiation on computation graphs

44

- We would like to compute $\frac{\partial L}{\partial a} \frac{\partial L}{\partial b} \frac{\partial L}{\partial c}$
- **Chain rule**

$$\frac{du}{dx} = \frac{du}{dv} \cdot \frac{dv}{dx}$$

- We can apply the chain rule to more than two functions

On computation graph

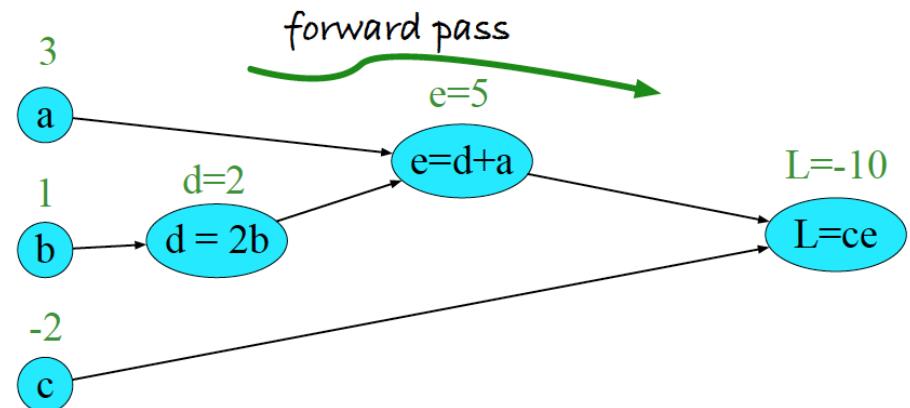
$$L = ce$$

So:

$$\frac{\partial L}{\partial c} = e$$

$$\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a}$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$$



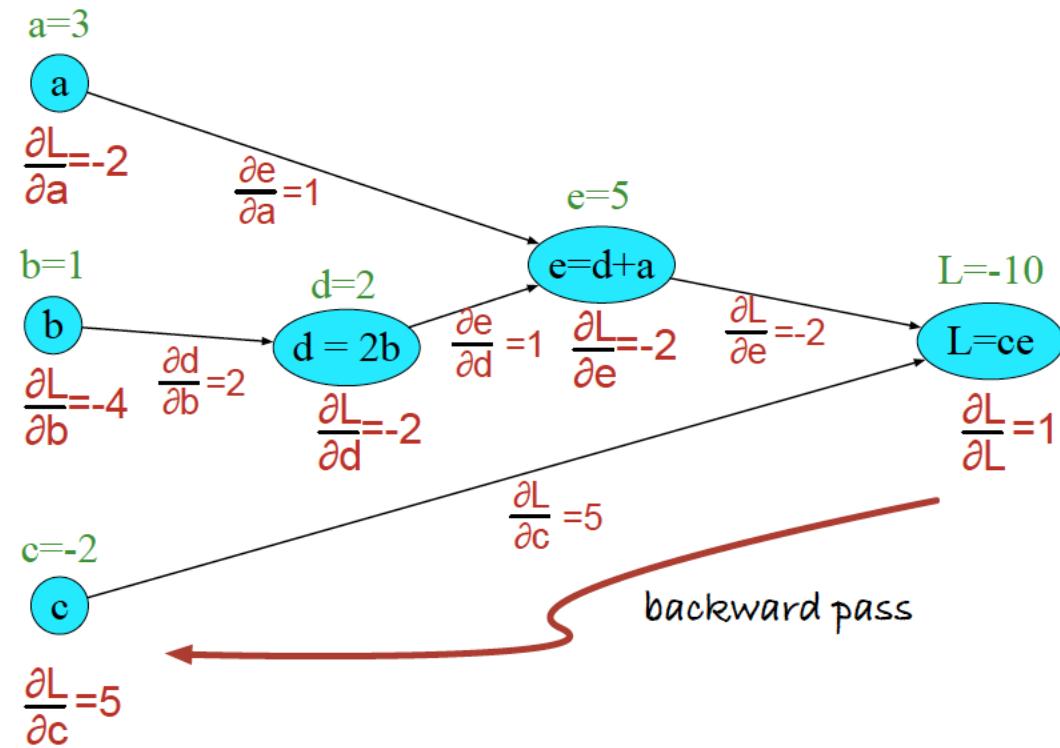
Backward differentiation on computation graphs

45

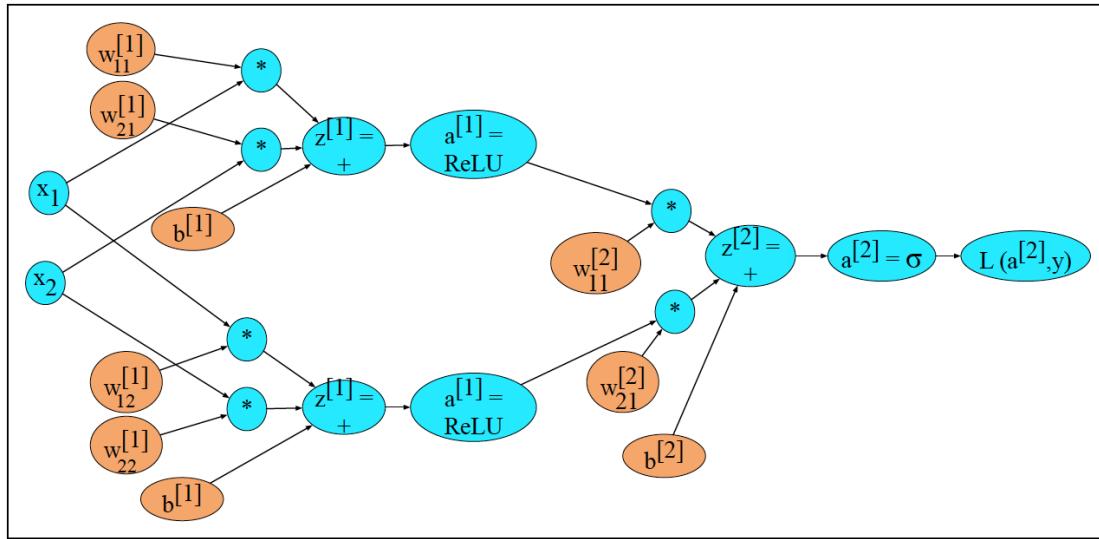
$$L = ce : \frac{\partial L}{\partial e} = c, \frac{\partial L}{\partial c} = e$$

$$e = a + d : \frac{\partial e}{\partial a} = 1, \frac{\partial e}{\partial d} = 1$$

$$d = 2b : \frac{\partial d}{\partial b} = 2$$



Backward differentiation for a neural network



■ Derivatives of activation functions

- Sigmoid: $\frac{d\sigma}{dz} = \sigma(z)(1 - \sigma(z))$
- Tanh: $\frac{dtanh(z)}{d(z)} = 1 - \tanh^2(z)$
- ReLU: $\frac{d\text{ReLU}(z)}{d(z)} = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \geq 0 \end{cases}$

Training neural networks

- We apply gradient-based optimization algorithms
 - SGD
 - Adam
 - ...
- Aspects we need to care when training
 - Weight initialization
 - Regularization: dropout,...
 - Hyperparameter tuning
 - Learning rate
 - Mini-batch size
 - Model architecture
- Some libraries that support differentiation on computation graphs: Pytorch, Tensorflow, Jax