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◼ The building block of a neural network

 Weight vector 𝑤 = 𝑤1 … 𝑤𝑛

 Bias term 𝑏

 Activation function 𝑓

Weights

Input layer

Weighted sum

Non-linear transform

Output value
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◼ The building block of a neural network

 Weight vector 𝑤 = 𝑤1 … 𝑤𝑛

 Bias term 𝑏

 Activation function 𝑓 (non-linear)

◼ Output of a neural unit
𝑦 = 𝑎 = 𝑓(𝑧)

Here:

 𝑧 is the weighted sum

𝑧 = ෍

𝑖

𝑤𝑖𝑥𝑖 + 𝑏

𝑧 = 𝑤 ∙ 𝑥 + 𝑏
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◼ There are many non-linear activation functions
 Sigmoid

𝑦 = 𝜎 𝑧 =
1

1 + 𝑒−𝑧

 Tanh

𝑦 =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

 Rectified Linear (ReLU)
𝑦 = max(𝑥, 0)

 PReLU

 …
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◼ Tanh and ReLU functions



An example

Suppose a unit has:

◼ w = [0.2,0.3,0.9] 

◼ b = 0.5 

What happens with input x:

◼ x = [0.5,0.6,0.1] 

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows afinal schematic of a basic neural unit. In this example the unit

takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each

valueby aweight (w1, w2, and w3, respectively), addsthem to abiasterm b, and then

passes theresulting sum through asigmoid function to result in anumber between 0

and 1.
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Figure7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and abias b that we represent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networks we’ ll reserve y to

mean thefinal output of theentire network, leaving a as theactivation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a

unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

Theresulting output y would be:

y = s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e− 0.87
= .70

In practice, the sigmoid is not commonly used as an activation function. A function

that is very similar but almost alwaysbetter is the tanh function shown in Fig. 7.3a;tanh

tanh isavariant of the sigmoid that ranges from -1 to +1:

y =
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x ispositive, and 0 otherwise:

y = max(x,0) (7.6)
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Let’s walk through an example just to get an intuition. Let’s suppose we have a

unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e− 0.87
= .70

In practice, the sigmoid is not commonly used as an activation function. A function

that isvery similar but almost alwaysbetter is the tanh function shown in Fig. 7.3a;tanh

tanh is avariant of the sigmoid that ranges from -1 to +1:

y =
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

In Python:
import numpy as np

y = 1/(1+np.exp(-

(np.dot(w,x) + b)))
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Boolean functions
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◼ AND, OR, XOR functions



Boolean functions using Perceptron
14

◼ Using Perceptron to compute above functions

𝑦 = ቊ
0, if 𝑤 ∙ 𝑥 + 𝑏 ≤ 0
1,  if 𝑤 ∙ 𝑥 + 𝑏 > 0

◼ We can use Perceptron (a) for AND and (b) for OR 



The XOR problem
15

◼ It’s not possible to build a perceptron to compute 
logical XOR!

◼ The solution: neural networks!



The solution: neural networks
16

◼ XOR solution with two-layer neural network and 
ReLU activation functions



The solution: neural networks
17

x1 x2 h1 h2 y1

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 2 1 0
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Feedforward Neural Networks

◼ Can also be called multi-layer perceptrons (or MLPs)  
for historical reasons



Feed-forward neural networks
20

◼ Simple feed-forward neural networks inclue:

 Input units

 Hidden units

 Output units



Feed-forward neural networks
21

◼ A single hidden unit has:

 parameters 𝑤 (the weight vector) and 

 Bias term 𝑏 (scalar)

◼ Combine weight vectors and bias terms of units into 
matrix 𝑊 and vector 𝐛



Feed-forward neural networks
22

◼ A single hidden unit has:

 parameters 𝑤 (the weight vector) and 

 Bias term 𝑏 (scalar)

◼ Combine weight vectors and bias terms of units into 
matrix 𝑊 and vector 𝐛

◼ Output of the hidden layer, the vector ℎ with 
sigmoid as the activation function

ℎ = 𝜎 𝑊𝑥 + 𝐛

 The activation function is applied to vector element-wise

◼ 𝑔( 𝑧1, 𝑧2, 𝑧3 ) = [𝑔 𝑧1 , 𝑔 𝑧2 , 𝑔 𝑧3 ]



Dimensions of vectors and matrices
23

◼ Input layer (layer 0): 𝑥 ∈ ℝ𝑛0

◼ Hidden layer (layer 1): ℎ ∈ ℝ𝑛1 , 𝑏 ∈ ℝ𝑛1

◼ Weight matrix: 𝑊 ∈ ℝ𝑛1×𝑛0



Output layer
24

◼ If we do binary classification and use sigmoid 
function at the output layer, we use a single output 
unit



Output layer
25

◼ For multi-class classification, we use K units in 
output layer and softmax function

 K is the number of classes



Binary Logistic Regression as a 1-layer Network
26

w

xn
x1

𝑦 = 𝜎(𝑤 ∙ 𝑥 + 𝑏)

+1

w1 wn b

(y is a scalar)
σOutput layer

(σ node)

Input layer
vector x

(we don't count the input layer in counting layers!)

(vector)
(scalar)



Multinomial Logistic Regression as a 1-layer Network
27

W

xnx1

Fully connected single layer network

W is a 
matrix

𝑦 = softmax(𝑊𝑥 + 𝑏)

+1

y is a vector

y1 yn

b is a vector

b

s s sOutput layer
(softmax nodes)

Input layer
scalars



Reminder: softmax: a generalization of sigmoid

◼ For a vector z of dimensionality k, the softmax is:

◼ Example:



Two-Layer Network with scalar output

U

W

xnx1 +1

y is a scalar

b

hidden units

(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be ReLU
Or tanh

z = 𝑈ℎ
𝑦 = 𝜎(𝑧)



Two-Layer Network with scalar output

U

W

xnx1 +1

b

hidden units

(σ node)

Input layer
(vector)

Output layer
(σ node)

i

j
Wji

vector

y is a scalar

z = 𝑈ℎ
𝑦 = 𝜎(𝑧)



Two-Layer Network with scalar output

U

W

xnx1 +1

b

hidden units

(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be ReLU
Or tanh

y is a scalar

z = 𝑈ℎ
𝑦 = 𝜎(𝑧)



Two-Layer Network with softmax output

U

W

xnx1 +1

b

hidden units

(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be ReLU
Or tanh

y is a vector
z = 𝑈ℎ
𝑦 = softmax(𝑧)



Multi-layer Notation

W[1

]

xnx1 +1

b[1]

i

j

W[2

] b[2]

𝑧[1] = 𝑊[1]𝑎[0] + 𝑏[1]

𝑎[0]

𝑎[1] = 𝑔 1 (𝑧 1 )

𝑧[2] = 𝑊[2]𝑎[1] + 𝑏[2]

𝑎[2] = 𝑔 2 (𝑧 2 )

𝑦 = 𝑎[2]

sigmoid or softmax

ReLU



Multi Layer Notation
34

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a



Replacing the bias unit

◼ Let's switch to a notation without the bias unit

◼ Just a notational change

1. Add a dummy node a0=1 to each layer

2. Its weight w0 will be the bias

3. So input layer a[0]
0=1, 

 And a[1]
0=1 , a[2]

0=1,…



Replacing the bias unit

◼ Instead of:     We'll do 
this:

x= x1, x2, …, xn0 x= x0, x1, x2, …, xn0



Replacing the bias unit

x1 x2

y1

xn0
…

…

+1

b

…

U

W

y2
yn2

h1
h2 h3

hn1

x1 x2

y1

xn0
…

…

x0=1

…

U

W

y2
yn2

h1
h2 h3

hn1

Instead of:     We'll do this:
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Loss function
39

◼ Binary classiffication with sigmoid function at the 
output layer

 Cross entropy loss  (same as logistic regression) 



Loss function
40

◼ Multinomial classification with softmax function

𝐿𝐶𝐸 ෝ𝑦, 𝑦 = − ෍

𝑖=1

𝐶

𝑦𝑖 log ො𝑦𝑖

◼ Representing 𝑦 as one-hot vector, where true class 
is 𝑖

𝑦𝑖 = 1 and 𝑦𝑗 = 0 ∀ 𝑗 ≠ 𝑖

◼ Loss function becomes

𝐿𝐶𝐸 ෝ𝑦, 𝑦 = − log ො𝑦𝑖 = − log
𝑒𝑧𝑖

σ𝑗=1
𝐾 𝑒𝑧𝑗



Computing the Gradient
41

◼ Calculate partial derivative of the loss function with 
respect to each parameter

◼ In neural networks, computing gradients for weights 
in layers is complicated!

◼ Solution: error backpropagation, or backprop 
(Rumelhart et al., 1986) .



Computation graphs
42

◼ Backpropagation is the same as backward 
differentiation

◼ Backward differentiation depends on computation 
graphs



Computation graphs
43

◼ The computation is broken down into separate 
operations, each of which is modeled as a node in a 
graph

◼ Consider: 𝐿 𝑎, 𝑏, 𝑐 = 𝑐 𝑎 + 2𝑏

 series of computation

◼ 𝑑 = 2 ∗ 𝑏

◼ 𝑒 = 𝑎 + 𝑑

◼ 𝐿 = 𝑐 ∗ 𝑒



Backward differentiation on compution graphs
44

◼ We would like to compute 
𝜕𝐿

𝜕𝑎
 

𝜕𝐿

𝜕𝑏

𝜕𝐿

𝜕𝑐

◼ Chain rule
𝑑𝑢

𝑑𝑥
=

𝑑𝑢

𝑑𝑣
∙

𝑑𝑣

𝑑𝑥
 We can apply the chain rule to more than two functions

On compution graph
𝐿 = 𝑐𝑒

So:
𝜕𝐿

𝜕𝑐
= 𝑒

𝜕𝐿

𝜕𝑎
=

𝜕𝐿

𝜕𝑒

𝜕𝑒

𝜕𝑎

𝜕𝐿

𝜕𝑏
=

𝜕𝐿

𝜕𝑒

𝜕𝑒

𝜕𝑑

𝜕𝑑

𝜕𝑏



Backward differentiation on compution graphs
45



Backward differentiation for a neural network
46

◼ Derivatives of activation functions

 Sigmoid: 
𝑑𝜎

𝑑𝑧
= 𝜎(𝑧)(1 − 𝜎 𝑧 )

 Tanh: 
𝑑tanh(𝑧)

𝑑(𝑧)
= 1 − tanh2(𝑧)

 ReLU: 
𝑑ReLU(𝑧)

𝑑(𝑧)
= ቊ

0 for 𝑥 < 0
1 for 𝑥 ≥ 0



Training neural networks
47

◼ We apply gradient-based optimization algorithms
 SGD

 Adam

 …

◼ Aspects we need to care when training
 Weight initialization

 Regularization: dropout,…

 Hyperparameter tuning

◼ Learning rate

◼ Mini-batch size

◼ Model architecture

◼ Some libraries that support differentiation on compution 
graphs: Pytorch, Tensorflow, Jax
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