Introduction to Neural Networks

Pham Quang Nhat Minh

minhpham0902 @gmail.com

December 29, 2024

i@ Lecture outline
|

m Neural units

m The XOR problem
m Feed-Forward Neural Networks

®m Training Neural Nets

i@i Lecture outline
3

m Neural units

m The XOR problem
m Feed-Forward Neural Networks

®m Training Neural Nets

.i@i Neural Network unit
[2]

m The building block of a neural network
Weight vectorw = w; ...w,
Bias term b
Activation function f

Output value A

Non-linear transform

Weighted sum

Weights

Input layer X, X X3

.i Neural unit
s 1

m The building block of a neural network

Weight vectorw = w; ...w,
Bias term b
Activation function f (non-linear)

m Output of a neural unit
y=a=f(z)
Here:

Z is the weighted sum

ZzzWiXi+b
[

Z=W-Xx+Db

§ & Non-Linear Activation functions

m There are many non-linear activation functions

Sigmoid
1 0.8
— o(z) = o y=1/(1+¢™)
Y (2) 1+e72 Y
Tanh)
et —e *
Y= e +e*
Rectified Linear (ReLU)
y = max(x, 0)

PRelLU

i@i Activation functions

m Tanh and RelLU functions

1.0 10
0.5 5
x)
- <
& 0.0 i o
] I
> =
-0.5 =5
-1.015 -5 0 5 10 1015 -5 0 5 10
(a) (b)

.i@ An example
41

Suppose a unit has:
mw = [0.2,0.3,0.9]
mb = 0.5

What happens with input x:
mx = [0.5,0.6,0.1]

y=s(w-Xx+ Db) =

.i@ An example

Suppose a unit has:
mw = [0.2,0.3,0.9]
mb= 0.5

What happens with the following input x?
mx = [0.5,0.6,0.1]

1
y=s(w-x+b)= 7 & (wxtb) ~

3

.i An example
1

Suppose a unit has:
B w = [0.2,0.3,0.9]
m b = 0.5

What happens with input x:
B x = [0.5,0.6,0.1]

1
y=s(W-X+h)= 11 a-(wxrb) ~
1 —
1+ @ (5w2+ .63+ .19+ 5)

.i An example
41

Suppose a unit has:
mw = [0.2,0.3,0.9]
m b = 0.5

What happens with input x: InPython:

import numpy as np
X = [0.5,0.6,0.1] y = 1/ (l+np.exp (-
(np.dot (w,x) + b)))
1 —
y=8s(W-X+ D)= 1 a(wxrb) ~
1 1
1+ e—(.5/e.2+.6163+.1/e9+ .5) - 1+ e 0.87 — 70

i@i Lecture outline

2y
m Neural units
m The XOR problem
m Feed-Forward Neural Networks

®m Training Neural Nets

i® Boolean functions
N

m AND, OR, XOR functions

AND OR XOR
x1 x2|y x1 X2 |y x1 x21|y
O 0 |0 O 0 (0 O 0 [0
® 1 |0 O 1 |1 O 1 |1
1 0 (0 1 0 (1 1 0 |1
1 1 |1 1 1 |1 1 1 |0
72
O °
0 O g
|
0 1
a) x; AND x,

3

§ & Boolean functions using Perceptron
ey

m Using Perceptron to compute above functions
_{0, ifw-x+b <0
Y= 1, ifw-x+b>0
m We can use Perceptron (a) for AND and (b) for OR

X1 X1
“RMLHRH “ﬂxl
x—1—=0 x%—1—30
2 -1/// 0///
+1/ +1/
AND OR XOR
X1 X2y X1 x21|y X1l x21|y
® 0 |0 O 0 |0 ® 0 |0
®© 1 |0 O 1 |1 O 1 |1
1 0 |0 1 0 |1 1 0 |1
1 1 |1 1 1 |1 1 1 1|0

§# & The XOR problem
El

m It’s not possible to build a perceptron to compute
logical XOR!

m The solution: neural networks!

X2,) 2
1O o 1 1 o 1@ 0
?
a) x; AND x, b) x; OR x, ¢) x; XOR X,

3

§ & The solution: neural networks
[]

m XOR solution with two-layer neural network and
RelLU activation functions

@ XOR

1 -2 x1 x2

E_’
S S
(=]
S = = (<

N
/
y

3

§ & The solution: neural networks

5
b2

~ = O O
_ O L O
N P P O
m O O O
O L Rk O

§ & Lecture outline
ey

m Neural units

m The XOR problem
m Feed-Forward Neural Networks

m Training Neural Nets

3

§ & Feedforward Neural Networks
L]

m Can also be called multi-layer perceptrons (or MLPs)
for historical reasons

3

_i Feed-forward neural networks
20

m Simple feed-forward neural networks inclue:
Input units
Hidden units
Output units

3

_i Feed-forward neural networks
El

m Asingle hidden unit has:
parameters w (the weight vector) and

Bias term b (scalar)

m Combine weight vectors and bias terms of units into
matrix W and vector b

3

‘i Feed-forward neural networks
o2 f

m Asingle hidden unit has:
parameters w (the weight vector) and
Bias term b (scalar)

m Combine weight vectors and bias terms of units into
matrix W and vector b

m Output of the hidden layer, the vector h with
sigmoid as the activation function

h=oc(Wx+b)
The activation function is applied to vector element-wise
n g([21, 23, 23]) = [9(21), 9(22), g(2z5)]

f_ Dimensions of vectors and matrices
N

m Input layer (layer 0): x € R"o
m Hidden layer (layer 1): h € R™1, p € R™
m Weight matrix: W € R"1*"o

Input Layer € R® Hidden Layer € R4 Output Layer € R 3

§ & Output layer
=

m If we do binary classification and use sigmoid
function at the output layer, we use a single output
unit

j_ Output layer
|25

m For multi-class classification, we use K units in
output layer and softmax function
K is the number of classes

Input Layer € R® Hidden Layer € R* Output Layer € R 3

j_ Binary Logistic Regression as a 1-layer Network
o

(we don't count the input layer in counting layers!)

Output layer ‘ y=oc(Ww-:x+Db)
(0 node) m (y is a scalar)
W Wl Wn b (scalar)
(vector)

e @ @ @ @ @

vector x

i Multinomial Logistic Regression as a 1-layer Network
23

Fully connected single Iayer network

Output layer ‘ ‘ ‘ y = softmax(Wx + b)
(softmax nodes) A y is a vector
W % "?: AN b
W is a J ' | b is a vector

matrix

e @ 6 O @ O

scalars

_i@ Reminder: softmax: a generalization of sigmoid
1

m For a vector z of dimensionality k, the softmax is:

exp (z1) exp (22) exp ()

- N’ ey =7
D im18xp(zi) D> i—1exp(z) D i1 €xp(zi)

softmax(z) =

m Example:
exp (i)
> 1exp(z))

z=10.6,1.1,—1.5,1.2,3.2,—1.1]
softmax(z) = [0.055,0.090,0.006,0.099,0.74,0.010]

1 <i<k

softmax(z;) =

i Two-Layer Network with scalar output

Output layer ’ y = 0(z) yisascalar

(0 node) U z=Uh

hidden units O 00 h=cWx+b)

(0 nOdE) A\\ 'S qm;\\"‘x‘ .%\ Could be ReLU
W X e ‘.,'\ \ b Or tanh

Input layer)
(vector) ‘ ‘ ‘ b

j_ Two-Layer Network with scalar output

Output layer ’ y = 0(z) yisascalai
(0 node) U z=Uh

hidden units ‘ h=oc(Wx+b)
(0 node) >

AN b vector

®© 0

Input layer
(vector) ‘

i Two-Layer Network with scalar output

Output layer ’ y = 0a(z) yisascalar

(0 node) U z=Uh

hidden units O 00 h=cWx+b)

(0 nOdE) A\\ L) qm;\\"‘x‘ .%\ Could be RelLU
W X e ,."\ \ b Or tanh

Input layer)
(vector) ‘ ‘ ‘ b

j_ Two-Layer Network with softmax output

Output layer ‘ ‘ Yy = lS](;zftmaX(Z)
1

o node , .

() U) y IS a vector
hidden units ‘ O ‘ h=0oc(Wx+Db)
(0 nOdE) A\\ L) q:\:\t"‘ﬁ ‘.(M\ Could be RelLU

W ’ /ﬁ“ ' < ‘.‘.' "N b Or tanh

I
e o 0 O O ®

O

i Multi-layer Notation
N .

y = al?!
‘ al?l = gl2l 12l sigmoid or softmax
W[2 ' b[2] 7121 = w2lgltl 4 pl2]
]
"X XK. a1 it 0
4’5\\> g g0
S [1] = witlglo] [1]

W[l & > 2 - b[l] zH = WHal®!l + p
] NN

% 6 ¢ \iiam

§ & Multi Layer Notation
T

Z:I: — wlll o] +b[1]
1 g[I](zllJ)
2l — wlgltl 4 pl2
2] g[Z] (Z[Z]) foriin 1..n
o i — Wl gli-1] 4 pl
alll = glil (Il

j’j — a[”]

Q
|

Q

<y
|

3

¥ & Replacing the bias unit
41

m Let's switch to a notation without the bias unit
m Just a notational change

1. Add a dummy node a,=1 to each layer

2. Its weight w, will be the bias

3. Soinput layer al® =1,
And alll =1, al?l=1,...

_i Replacing the bias unit

]
m Instead of: We'll do
this:
X= Xl’ X2, -ees» Xno X= XO’ Xl’ X2, s> Xno
h=0oc(Wx+Db) h=o(Wx)

no 1)
=o(Swaen) oL
=1 i=

i@i Replacing the bias unit

We'll do this:

Instead of:

i@i Lecture outline
.. __

m Neural units

m The XOR problem
m Feed-Forward Neural Networks

m Training Neural Nets

i@ Loss function
TR 1

m Binary classiffication with sigmoid function at the
output layer
Cross entropy loss (same as logistic regression)

Lee(9,y) = —logp(ylx) = —[ylogf+ (1 —y)log(1—7)]

3

i Loss fu nction
o5

B Multinomial classification with softmax function
C

yilogy;
=1

Lee(Vy) = —

l
m Representing y as one-hot vector, where true class
IS 1
yi=landy, =0V j+#i
m Loss function becomes
e’i

Lee(V,y) = —logy; = —log =%
j=1

e?J

§ & Computing the Gradient

m Calculate partial derivative of the loss function with
respect to each parameter

® In neural networks, computing gradients for weights
in layers is complicated!

m Solution: error backpropagation, or backprop
(Rumelhart et al., 1986) .

§ & Computation graphs
=

m Backpropagation is the same as backward
differentiation

m Backward differentiation depends on computation
graphs

3

§ & Computation graphs

m The computation is broken down into separate
operations, each of which is modeled as a node in a

graph
m Consider: L(a,b,c) = c(a + 2b)
series of computation

md=2x*b forward pass
—
me=a+d S

ml =c=xe

3
@)
1
D)
2
O

i@ Backward differentiation on compution graphs
-

_ OL OL OL
m We would like to compute 3a 3b de
m Chainrule
du du dv
dx dv dx

We can apply the chain rule to more than two functions

On compution graph

[= ce ; forward pass
SO: - \/—m
dL _ o
dc ¢
dL B dL de
da deda
dL 0L de dd

ob _ de dd ob

i Backward differentiation on compution graphs

3

_i Backward differentiation for a neural network
45|

m Derivatives of activation functions
Sigmoid: Z—Z =0d(z2)(1 -0(2))

dtanh(z)

: —1_ 2

Tanh: e 1 — tanh“(z)
_dReLU(z) _ J0 for x <0

T {1 forx > 0

§ & Training neural networks
22—

m We apply gradient-based optimization algorithms
SGD
Adam

m Aspects we need to care when training
Weight initialization
Regularization: dropout,...
Hyperparameter tuning
m Learning rate
m Mini-batch size
m Model architecture

m Some libraries that support differentiation on compution
graphs: Pytorch, Tensorflow, Jax

	Slide 1: Introduction to Neural Networks
	Slide 2: Lecture outline
	Slide 3: Lecture outline
	Slide 4: Neural Network unit
	Slide 5: Neural unit
	Slide 6: Non-Linear Activation functions
	Slide 7: Activation functions
	Slide 8: An example
	Slide 9: An example
	Slide 10: An example
	Slide 11: An example
	Slide 12: Lecture outline
	Slide 13: Boolean functions
	Slide 14: Boolean functions using Perceptron
	Slide 15: The XOR problem
	Slide 16: The solution: neural networks
	Slide 17: The solution: neural networks
	Slide 18: Lecture outline
	Slide 19: Feedforward Neural Networks
	Slide 20: Feed-forward neural networks
	Slide 21: Feed-forward neural networks
	Slide 22: Feed-forward neural networks
	Slide 23: Dimensions of vectors and matrices
	Slide 24: Output layer
	Slide 25: Output layer
	Slide 26: Binary Logistic Regression as a 1-layer Network
	Slide 27: Multinomial Logistic Regression as a 1-layer Network
	Slide 28: Reminder: softmax: a generalization of sigmoid
	Slide 29: Two-Layer Network with scalar output
	Slide 30: Two-Layer Network with scalar output
	Slide 31: Two-Layer Network with scalar output
	Slide 32: Two-Layer Network with softmax output
	Slide 33: Multi-layer Notation
	Slide 34: Multi Layer Notation
	Slide 35: Replacing the bias unit
	Slide 36: Replacing the bias unit
	Slide 37: Replacing the bias unit
	Slide 38: Lecture outline
	Slide 39: Loss function
	Slide 40: Loss function
	Slide 41: Computing the Gradient
	Slide 42: Computation graphs
	Slide 43: Computation graphs
	Slide 44: Backward differentiation on compution graphs
	Slide 45: Backward differentiation on compution graphs
	Slide 46: Backward differentiation for a neural network
	Slide 47: Training neural networks

