

Sequence Modeling

Phạm Quang Nhật Minh

minhpham0902@gmail.com

January 11, 2025

Lecture outline

- Sequence Labeling Problem
- Recurrent neural networks
- Multi-layer RNNs (Stacked RNNs)
- Bidirectional RNNs
- Two types of RNNs: LSTM and GRU

NLP and Sequential Data

■ NLP is full of sequential data

- Words in sentences
- Characters in words
- Sentences in discourse
- ...

Part-of-Speech Tagging

- Assigning a part-of-speech to each word in a text.
- Words often have more than one POS.
- **book**:
 - VERB: (*Book that flight*)
 - NOUN: (*Hand me that book*).

Part-of-Speech Tagging

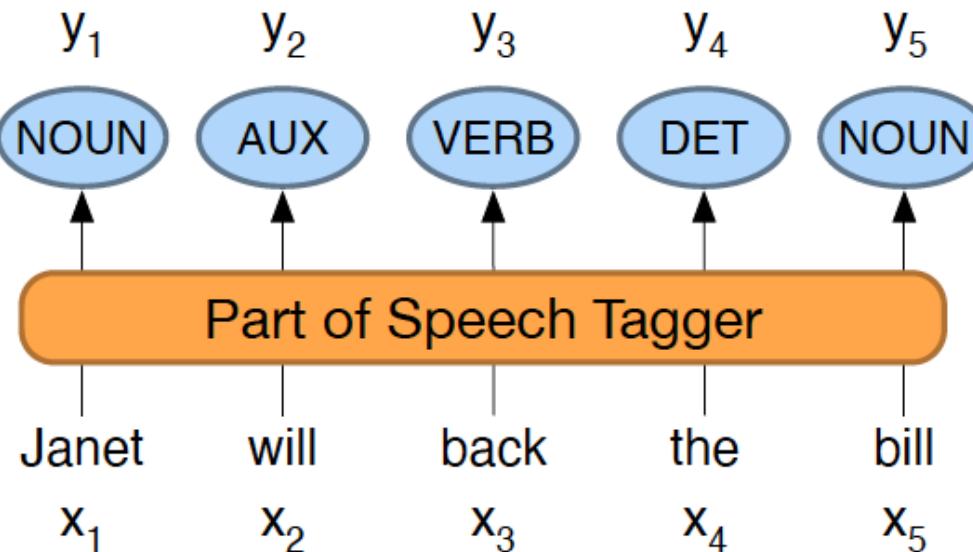
5

■ INPUT:

Jane will back the bill

■ OUTPUT:

Jane/NOUN will/AUX back/VERB the/DET bill/NOUN



Named Entities

- Named entity, in its core usage, means anything that can be referred to with a proper name. Most common 4 tags:
 - **PER** (Person): “Marie Curie”
 - **LOC** (Location): “New York City”
 - **ORG** (Organization): “Stanford University”
 - **GPE** (Geo-Political Entity): "Boulder, Colorado"
- Often multi-word phrases
- But the term is also extended to things that aren't entities:
 - dates, times, prices

Named Entity Tagging

- The task of named entity recognition (NER):
 - find spans of text that constitute proper names
 - tag the type of the entity.

NER Output

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

Why NER?

- Sentiment analysis: consumer's sentiment toward a particular company or person?
- Question Answering: answer questions about an entity?
- Information Extraction: Extracting facts about entities from text.

Why NER is hard

■ Segmentation

- In POS tagging, no segmentation problem since each word gets one tag.
- In NER we have to find and segment the entities!

■ Type ambiguity

[PER Washington] was born into slavery on the farm of James Burroughs.

[ORG Washington] went up 2 games to 1 in the four-game series.

Blair arrived in [LOC Washington] for what may well be his last state visit.

In June, [GPE Washington] passed a primary seatbelt law.

BIO Tagging

■ Define many new tags

- B-PERS, B-DATE,...: beginning of a mention of a person/date...
- I-PERS, I-DATE,...: inside of a mention of a person/date...
- O: outside of any mention of a named entity

[PERS Pierre Vinken] , 61 years old , will join
[ORG IBM] 's board as a nonexecutive director
[DATE Nov. 2] .

Pierre_B-PERS Vinken_I-PERS ,_O 61_O years_O old_O ,_O
will_O join_O IBM_B-ORG 's_O board_O as_O a_O
nonexecutive_O director_O Nov._B-DATE 29_I-DATE ._O

BIO Tagging variants: IO and BIOES

[PER Jane Villanueva] of [ORG United] , a unit of [ORG United Airlines Holding] , said the fare applies to the [LOC Chicago] route.

Words	IO Label	BIO Label	BIOES Label
Jane	I-PER	B-PER	B-PER
Villanueva	I-PER	I-PER	E-PER
of	O	O	O
United	I-ORG	B-ORG	B-ORG
Airlines	I-ORG	I-ORG	I-ORG
Holding	I-ORG	I-ORG	E-ORG
discussed	O	O	O
the	O	O	O
Chicago	I-LOC	B-LOC	S-LOC
route	O	O	O
.	O	O	O

Standard algorithms for NER

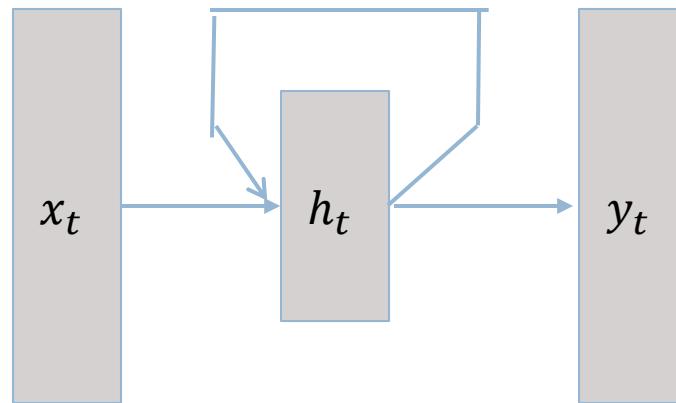
Supervised Machine Learning given a human-labeled training set of text annotated with tags

- Hidden Markov Models
- Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM)
- Neural sequence models (RNNs or Transformers)
- Large Language Models (like BERT), finetuned

Basic ideas of Recurrent neural networks (RNN)

14

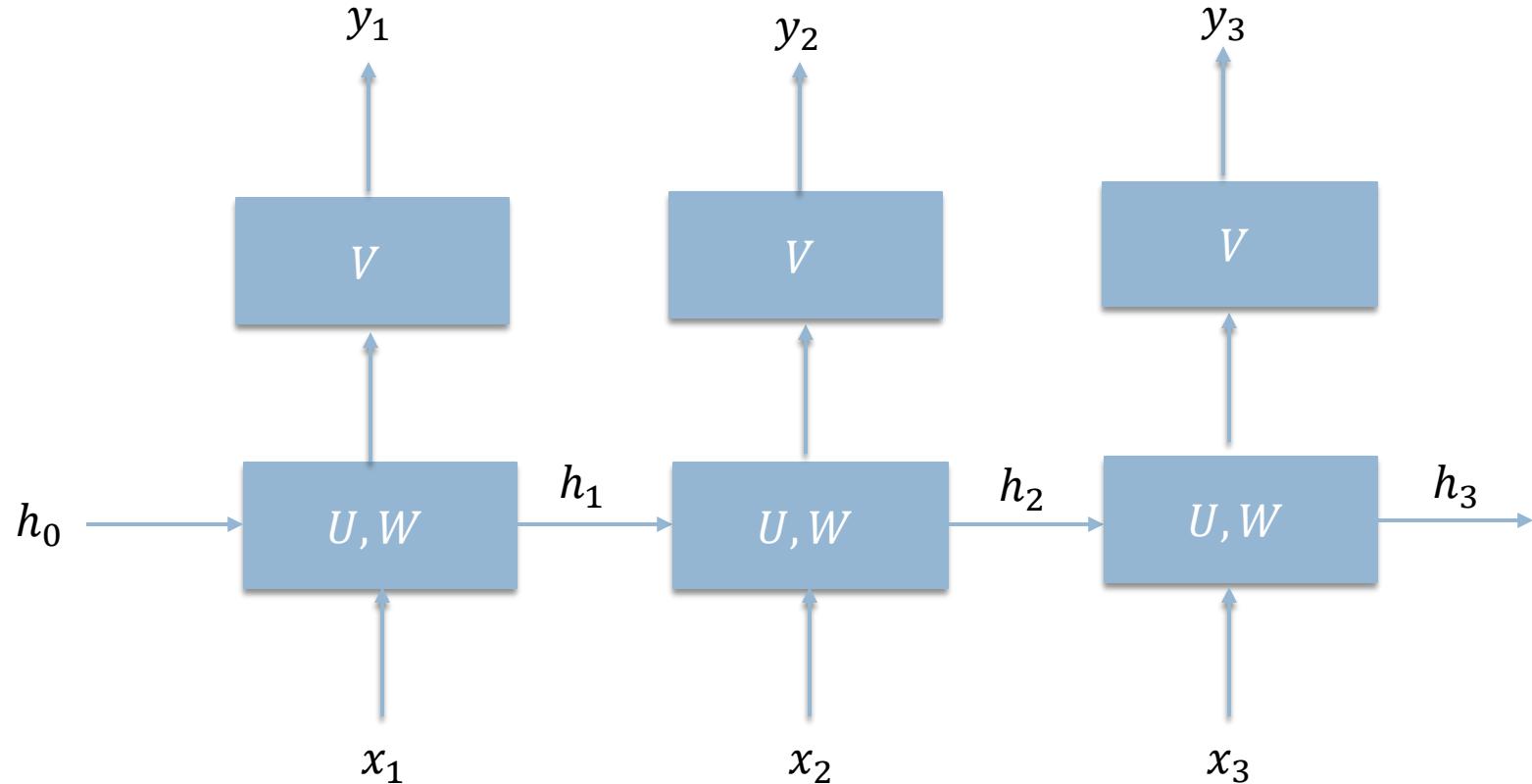
- Use recurrent link
 - Output of $t-1$ step is used as input for the t step
- Used same weights among steps



Unrolled representation of RNNs

15

x_i are vectors

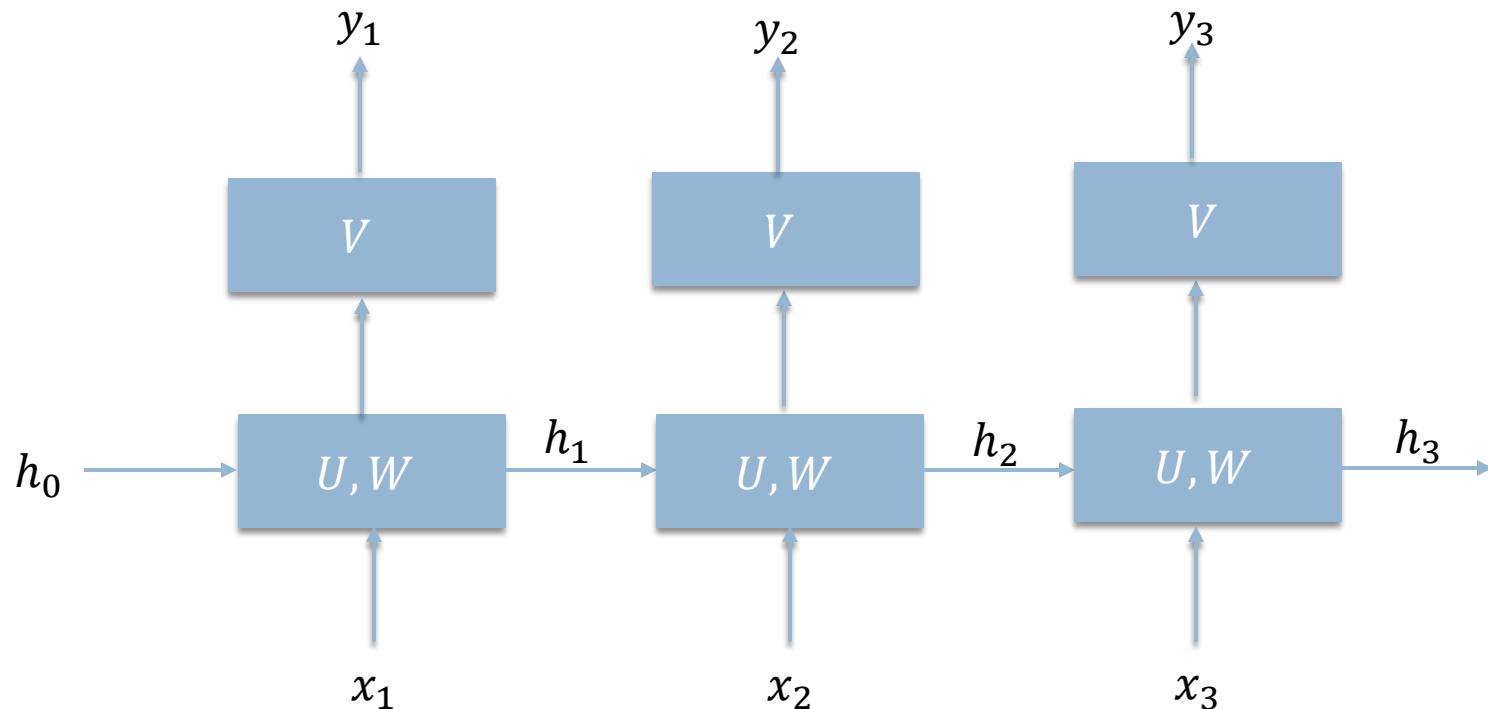


Equations in RNN

16

$$h_t = g(Uh_{t-1} + Wx_t)$$
$$y_t = f(Vh_t)$$
$$W \in \mathbb{R}^{d_h \times d_{in}}, U \in \mathbb{R}^{d_h \times d_h}, V \in \mathbb{R}^{d_{out} \times d_h}$$

d_{in}, d_h, d_{out} are input, hidden, and output layer dimensions

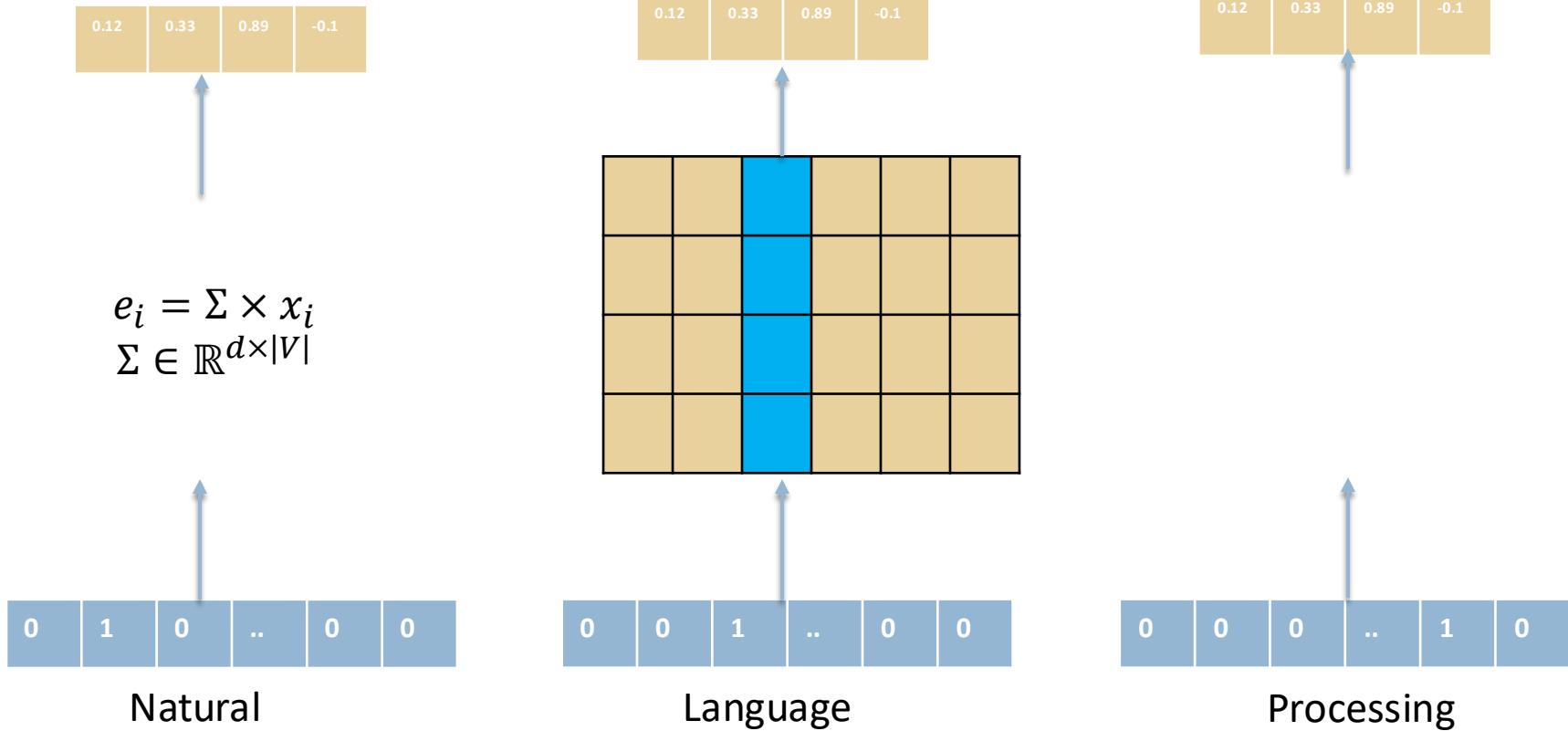


Input Layers of RNN in NLP tasks

17

■ Each word is a vector

- Dense vector obtained by an embedding layer (lookup matrix)



Forward inference in RNN

```
function FORWARDRNN(x, network) returns output sequence y
```

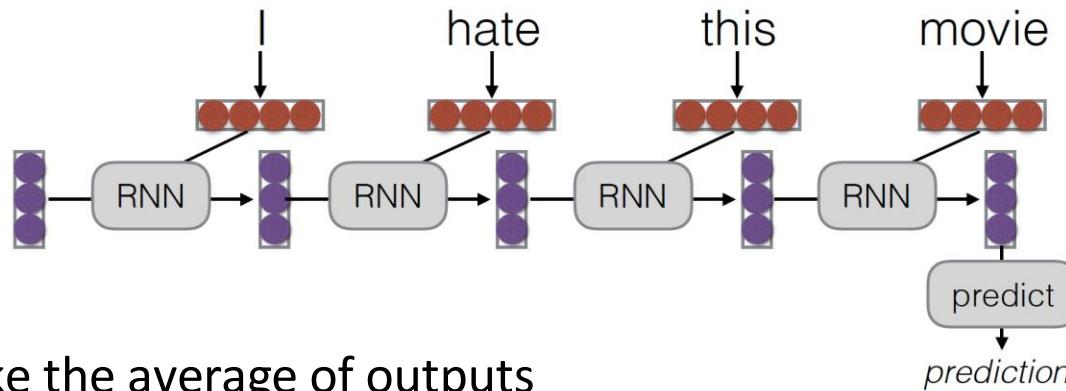
```
    h0  $\leftarrow$  0
    for i  $\leftarrow$  1 to LENGTH(x) do
        hi  $\leftarrow$  g(Uhi-1 + Wxi)
        yi  $\leftarrow$  f(Vhi)
    return y
```

The matrices **U**, **V** and **W** are shared across time, while new values for **h** and **y** are calculated with each time step

RNN for Sequence Classification

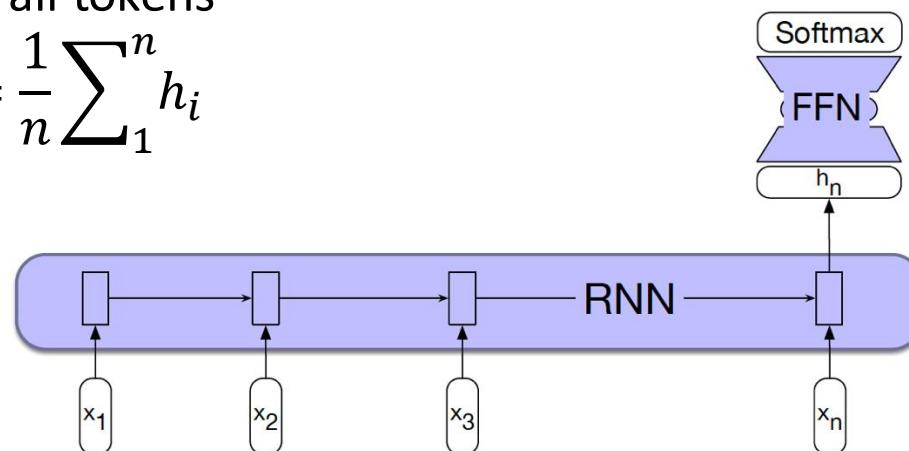
19

- Use the output of the hidden layer at of the last token as the representation of the entire sequence



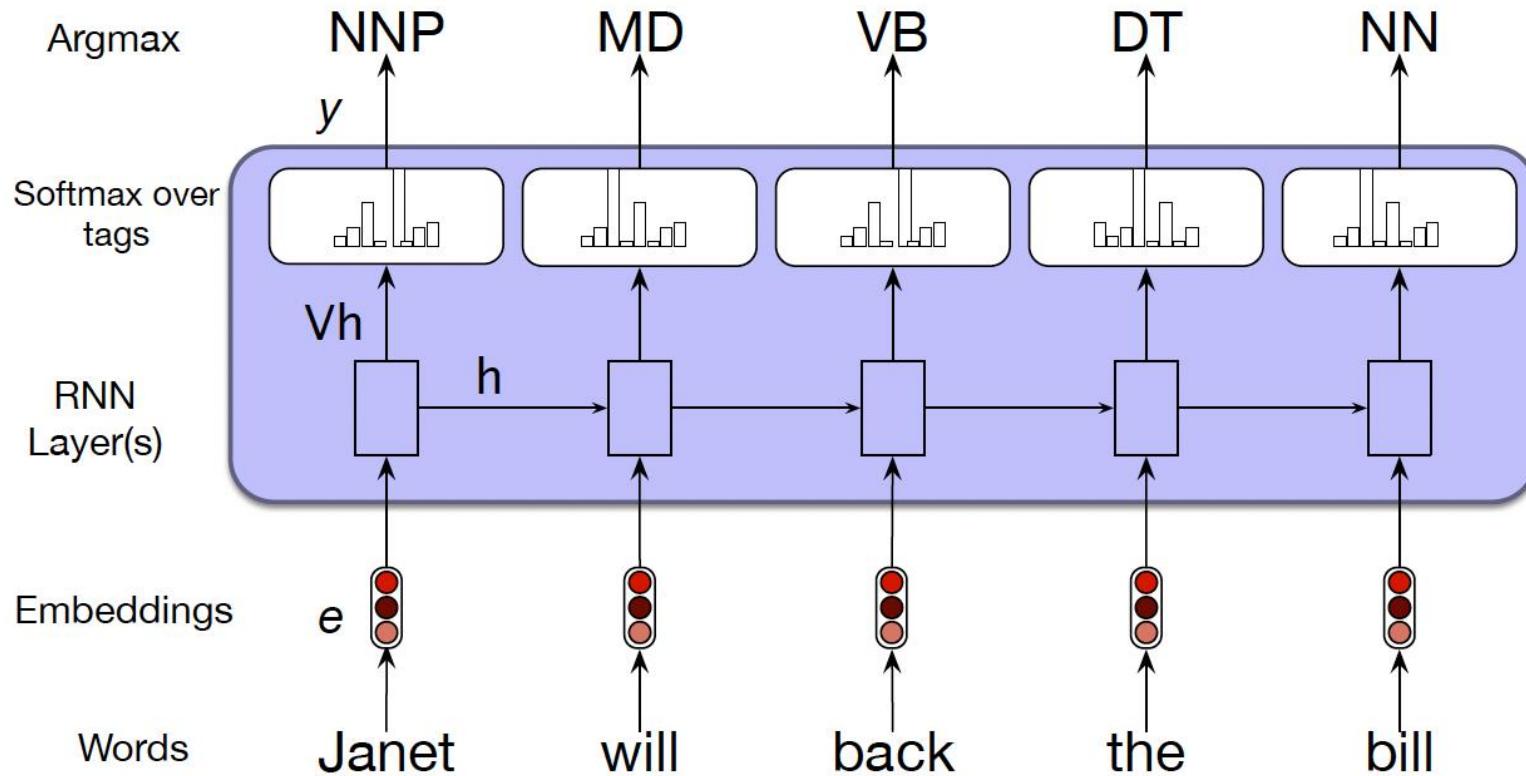
We can take the average of outputs of hidden layer for all tokens

$$h_{mean} = \frac{1}{n} \sum_1^n h_i$$



RNN for Sequence Labeling

20



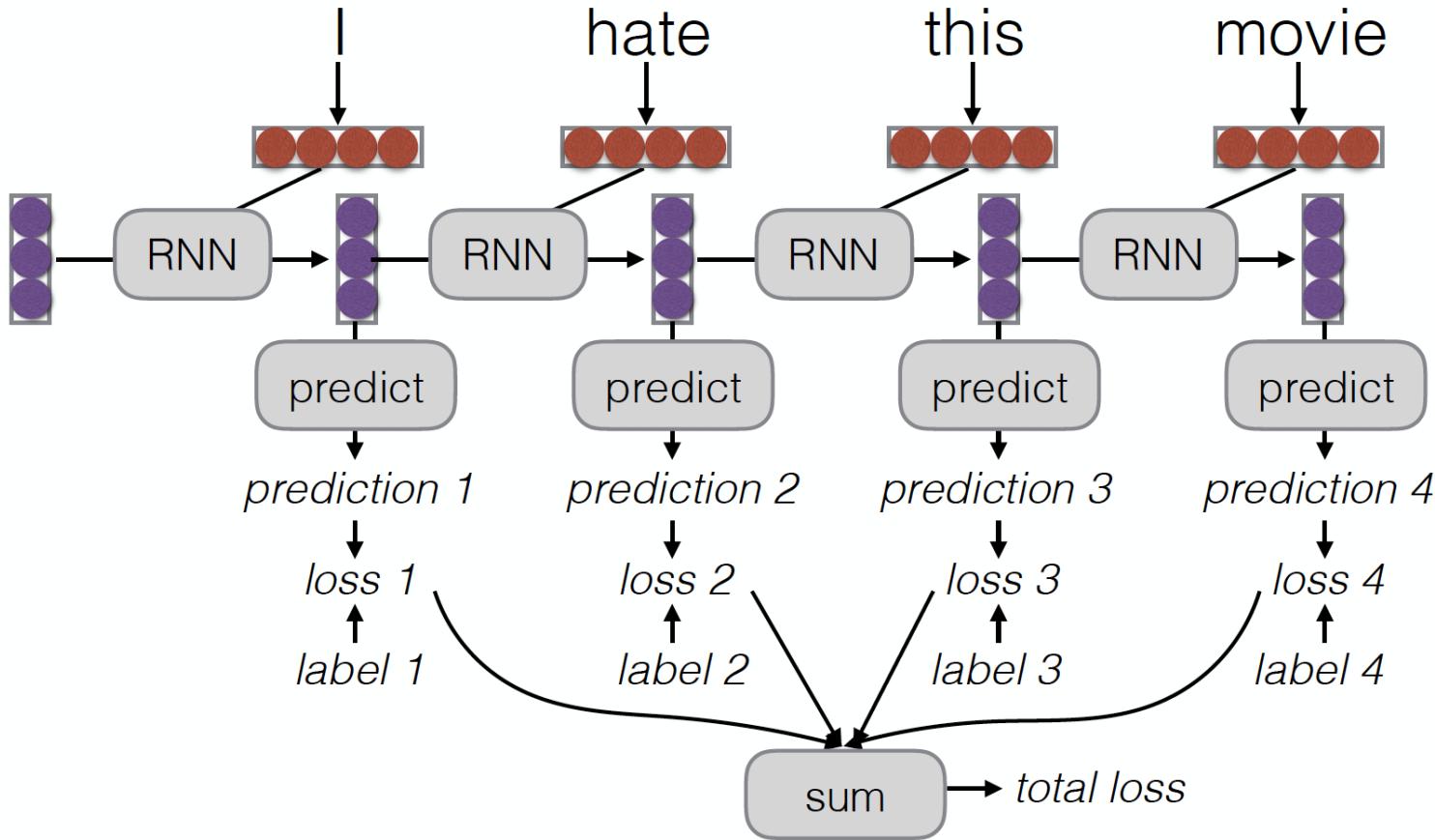
Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained word embeddings serve as inputs and a softmax layer provides a probability distribution over the part-of-speech tags as output at each time step.

Training RNNs

- Training RNN steps:
 - Unroll recurrent neural networks
 - Apply backpropagation to calculate gradients
- Algorithm of training RNN is called backpropagation through time (BPTT) (Werbos, 1990)

Training RNNs in tagging problems

22

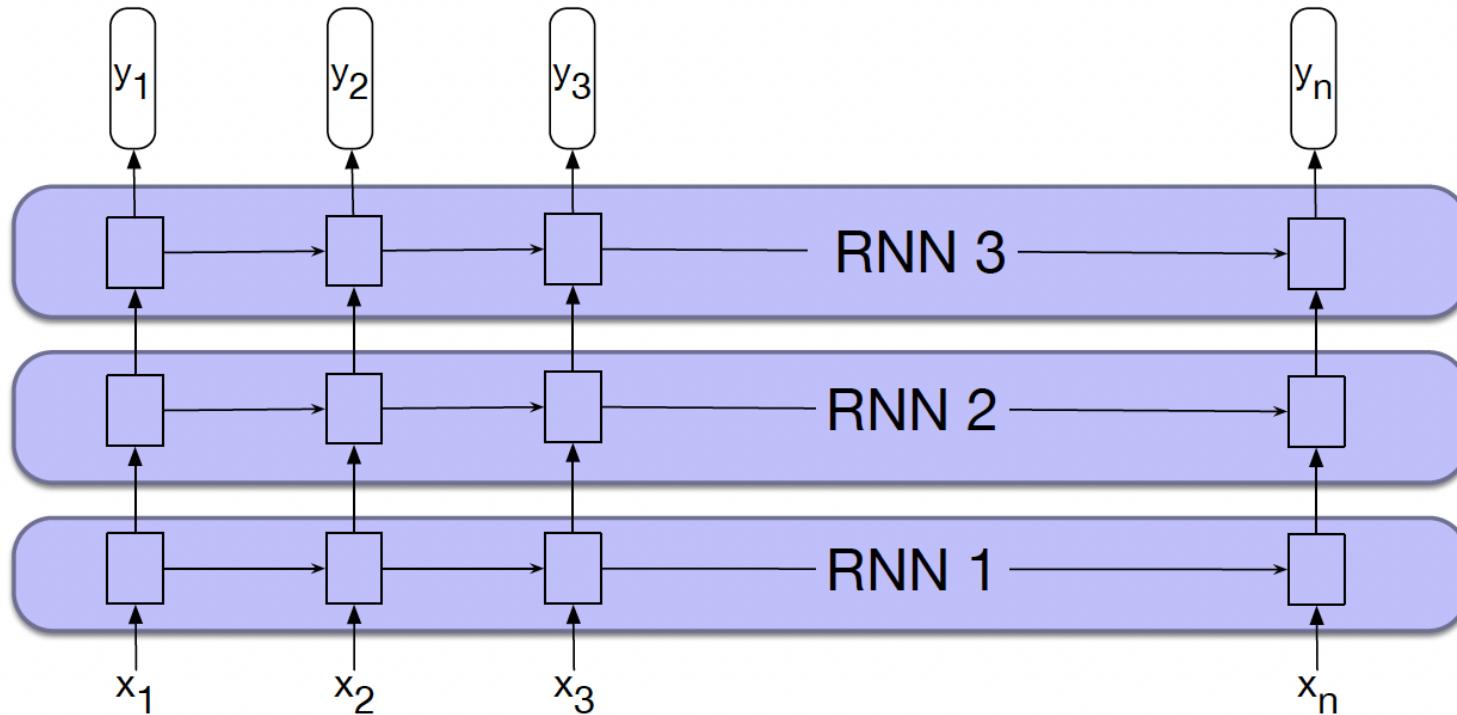


Lecture outline

- Recurrent neural networks
- Multi-layer RNNs (Stacked RNNs)
- Bidirectional RNNs
- Two types of RNNs: LSTM and GRU

Stacked RNNs

24



The output of a lower level serves as the input to higher levels with the output of the last network serving as the final output.

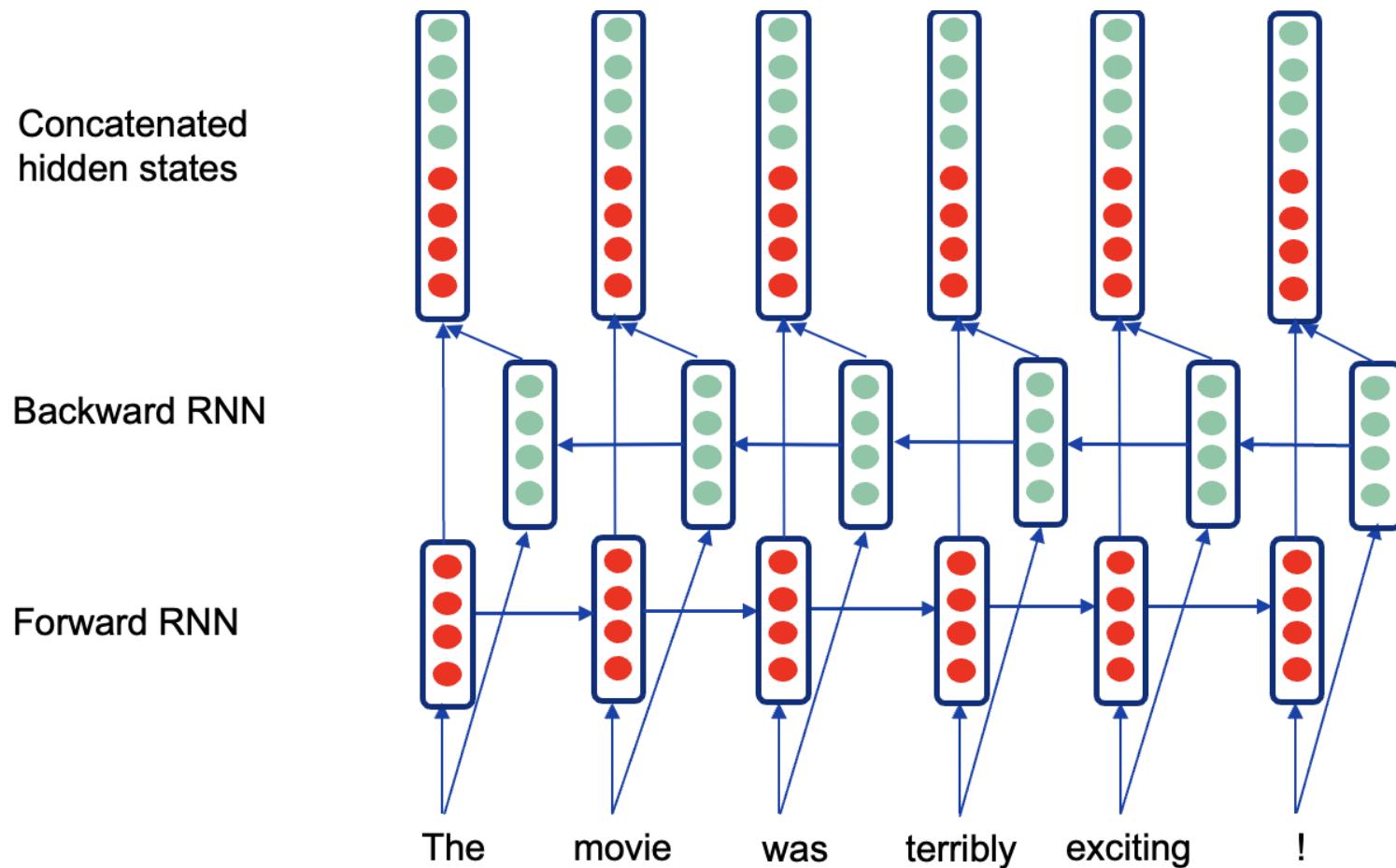
Stacked RNNs generally outperform single-layer networks but the training cost is higher than single-layer RNN networks

Lecture outline

- Recurrent neural networks
- Multi-layer RNNs (Stacked RNNs)
- **Bidirectional RNNs**
- Two types of RNNs: LSTM and GRU

Bidirectional RNNs

Context in both directions (left and right) is useful in some task (such as POS Tagging)



Bidirectional RNN: Formulas

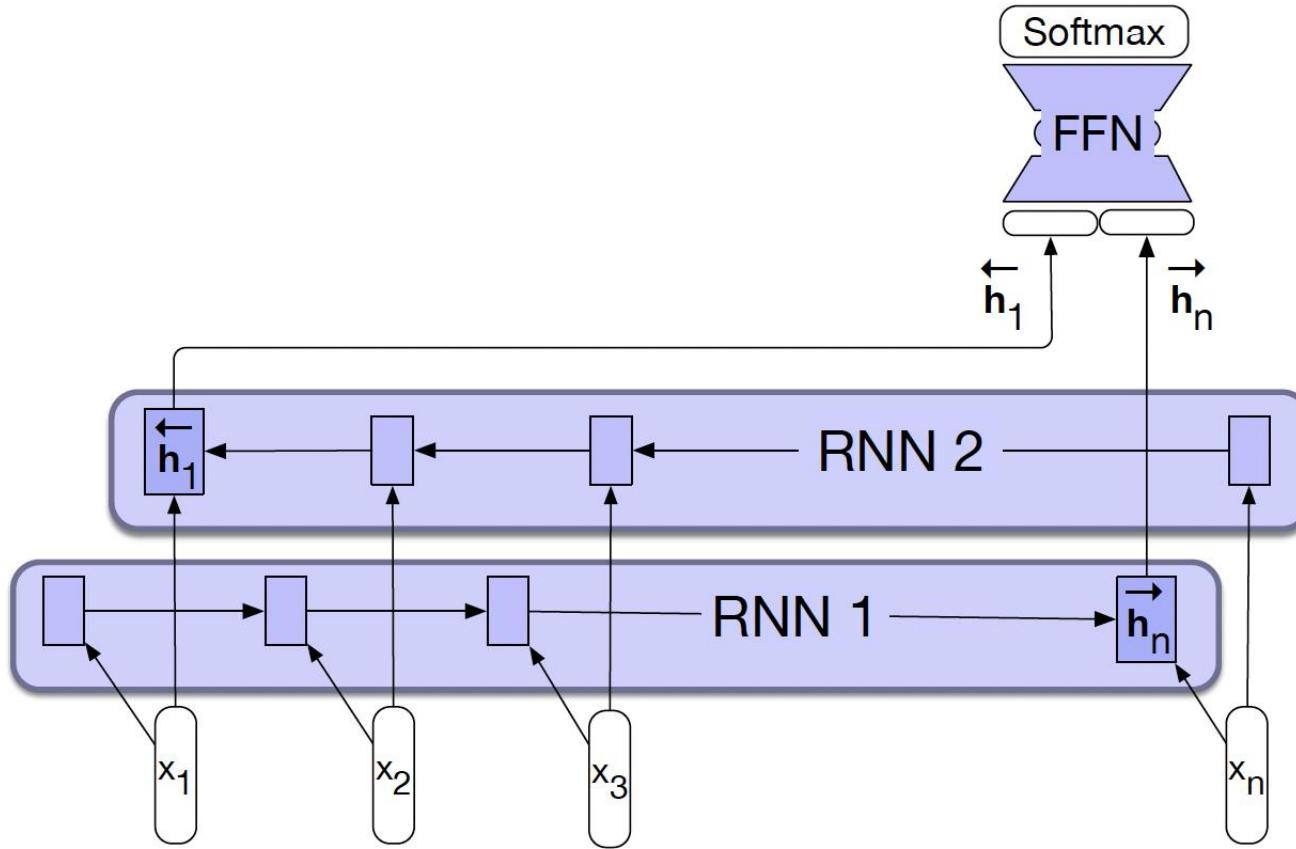
On time step t :

Forward RNN $\vec{h}^{(t)} = \text{RNN}_{\text{FW}}(x_1, \dots, x_t)$

Backward RNN $\overleftarrow{h}^{(t)} = \text{RNN}_{\text{BW}}(x_t, \dots, x_n)$

Concatenated hidden states $h^{(t)} = [\vec{h}^{(t)}; \overleftarrow{h}^{(t)}]$

Bidirectional RNN for Sequence Classification



The final hidden units from the forward and backward passes are combined to represent the entire sequence. This combined representation serves as input to the subsequent classifier.

Lecture outline

- Recurrent neural networks
- Multi-layer RNNs (Stacked RNNs)
- Bidirectional RNNs
- Two types of RNNs: LSTM and GRU

Why Long Short-term Memory (LSTM)?

- Standard RNNs could not handle long-term dependencies well
 - “I grew up in France... I speak fluent *French*.”

Why Long Short-term Memory (LSTM)?

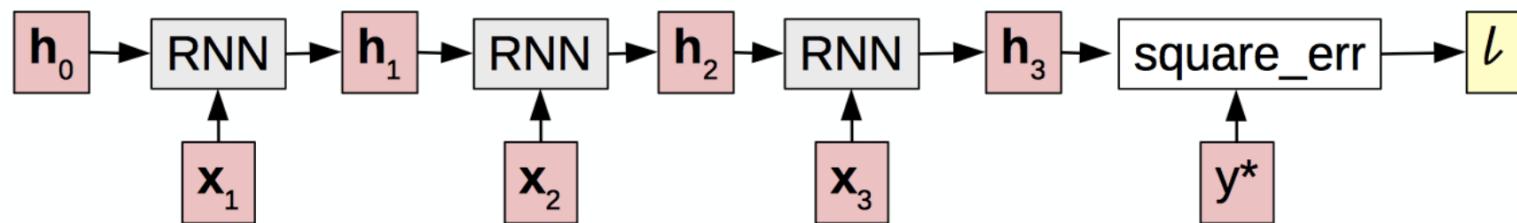
31

■ Vanishing Gradient problem

- Gradients decrease as they get pushed back

$$\frac{dl}{dh_0} = \frac{dh_1}{dh_0} \times \frac{dh_2}{dh_1} \times \frac{dh_3}{dh_2} \times \frac{dl}{dh_3}$$

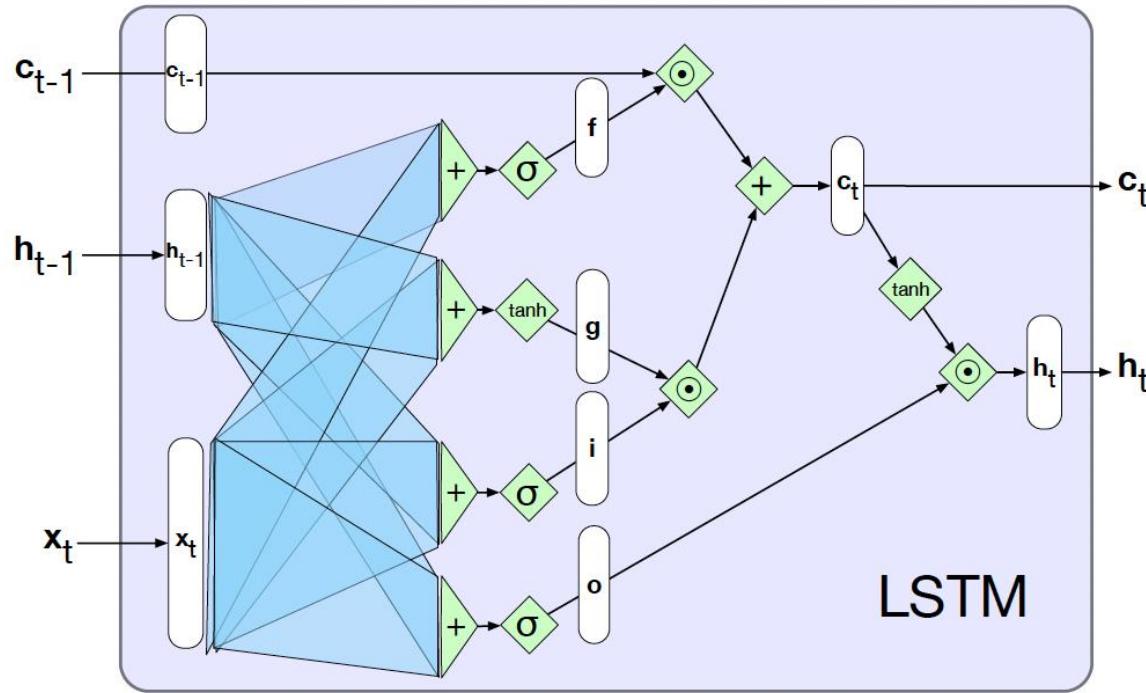
- $\frac{dl}{dh_0}$ = tiny, $\frac{dl}{dh_1}$ = small, $\frac{dl}{dh_3}$ = med, $\frac{dl}{dh_4}$ = large



Basic ideas of LSTM networks

- On step t , there is a hidden state *and* a cell state
 - The cell stores long-term information
 - The LSTM can erase, write and read information from the cell
- The selection of which information is erased/written/read is controlled by gates

LSTM Network architecture



A single LSTM unit displayed as a computation graph. The inputs to each unit consists of the current input, x , the previous hidden state h_{t-1} , and the previous context c_{t-1} . The outputs are a new hidden state, h_t and an updated context, c_t .

LSTM Network Equations

- **Forget gate:** to delete information from the context that is no needed

$$\mathbf{f}_t = \sigma(\mathbf{U}_f \mathbf{h}_{t-1} + \mathbf{W}_f \mathbf{x}_t)$$

$$\mathbf{k}_t = \mathbf{c}_{t-1} \odot \mathbf{f}_t$$

- **Input gate:** to select information to add to the current context

$$\mathbf{g}_t = \tanh(\mathbf{U}_g \mathbf{h}_{t-1} + \mathbf{W}_g \mathbf{x}_t)$$

$$\mathbf{i}_t = \sigma(\mathbf{U}_i \mathbf{h}_{t-1} + \mathbf{W}_i \mathbf{x}_t)$$

$$\mathbf{j}_t = \mathbf{g}_t \odot \mathbf{i}_t$$

$$\mathbf{c}_t = \mathbf{j}_t + \mathbf{k}_t$$

- **Output gate:** to decide what information is required for the current hidden state

$$\mathbf{o}_t = \sigma(\mathbf{U}_o \mathbf{h}_{t-1} + \mathbf{W}_o \mathbf{x}_t)$$

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t)$$

How does LSTM solve vanishing gradients?

- The LSTM architecture makes it easier for the RNN to preserve information over many timesteps
- LSTM doesn't *guarantee* that there is no vanishing/exploding gradient, but it does provide an easier way for the model to learn long-distance dependencies