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§ § The Encoder-Decoder Model: Motivation
e

m Recall: Sequence labeling models

A dog is chasing a boy on the playground

A

Det Noun Aux Verb Det Noun Prep Det Noun

m How we can handle the task where the input
sequence and the output sequence have different
length?



_i@ Some text-to-text tasks
e
m Machine Translation

B Text summarization
m Title generation



% & The Encoder-Decoder Model
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Components of the Encoder-Decoder Model:

e An encoder
* A context vector
e A decoder



¥ & Encoder
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m Given an input sequence, the encoder generates a
sequence of hiven vectors (contextualized
representations)
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_i@ Decoder
B
m A decoder accepts context vector ¢ as input and

generates an arbitrary length sequence of hidden
states h{"
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| j_ How the decoder generates output

Decoder
A
~ TN
E ] P Y
// | // | // : // |
Yi L Y2 | Y3 o Yg | </s>
(output is ignored during encoding) Ve A ! A : [} I[ 4 : 4
[
softmax ( Qn] | m : (od ) : L oo :
4 t ) 7 ot
d d d d d
hidden he, > he, > he, he,-c-hd, | > ': —— hﬂJ o :J N ': . *:]
layer(s) Lrl ) § | R | L_“ : “— :
embedding = | l : |
|
layer @ : | : @ |
I | |
|
X1 X2 X3 )(n <S> : ‘y1 i /‘y2 : /’ys : /(yn
\—— __/ l\// e g lk//
—~
Encoder




i Attention Mechanism
Lo

m Attention mechanism is to solve the bottleneck
problem in vanila encoder-decoder models

The last hidden state in the encoder is used as the context
vector ¢

Information at the beginning of the sequence is not well
represented

Encoder bottleneck
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¥ & Attention Mechanism
oy
m |dea: create a fixed-length context vector by taking a

weighted sum of all encoder hidden states

The weights focus more on a particular part of the source
text that is relevant for the token the decoder is currently

producing
Ci = 2 al]h]

J
How to caculate attention weights «;;?



_i Dot production attention
El N

m Measure how similar the decoder hidden state to
the encoder hidden state

score(hl 1r ]) he

B Normalize scores with a softmax

o;j = softmax(score(h? 1,h5) Vj€e)

exp(score(h?_,, h’

> exp(score(hl (,hy))
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‘i Transformers: Intution

m Intuition: “across a series of layers, we build up
richer and richer contextualized representations of
the meanings of input words or tokens”

At each layer of a transformer, to compute the
representation of a word i we combine information from
the representation of i at the previous layer with

information from the representations of the neighboring
words

m We need a mechanism to:

Weight representations of the different words from the
context at the prior level

Combine them to compute the representation of this layer



i@ Self-Attention Mechanism
sy

m Self-attention
Look the context

Integrate the representations from words in that context from
layer k-1 to build the

Layer 6

The
animal
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Cross
the
street
because
was

too
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self-attention distribution
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§ & Causal or backward-looking self-attention
[ ]

m Two types of self-attention
Backward-looking self-attention (e.g., GPT)
Bidirectional self-attention (e.g., BERT)

Self-Attention | | ] | l/’J %:
Layer -1 TN 7 A ——




§ & Self-Attention in details (1)
s ...

m Based on the idea of the attention mechanism, but
more sophisticated

m Map a query to an ouput by comparing the query

with keys
qi:x;WQ;k,- = x;WK;v,-:xI-WV (10.11)
Final verson:  score(x;,X;) = % K; (10.12)
Vi
o;j = softmax(score(x;,x;)) Vj<i  (10.13)
a, = Z(X{j\lj (10.14)
J=i




ii Self-Attention in details (2)

Output of self-attention

6. Sum the weighted
value vectors

5. Weigh each value vector
Qi j
4. Turn into weights via softmax

3. Divide score by d,  d

2. Compare x3’s query with
the keys for x1, x2, and x3

— 6 |
L}g @ o<

IO CEIIR]  Calculating the value of a3, the third element of a sequence using causal (left-
to-right) self-attention.




_i Multihead Attention
FEEEZ 2 1
m Idea: use multi-heads to capture relationships

between token in different ways: syntactic,
semantic, discourse relationships

m Each head i is provided with its own sets of key,
query, value matrices: Z{{, ZiQ, Z}/

Q=XWZ; K=XWK; v=xXwW' (017
head; = SelfAttention(Q, K, V) (10.18)
A = MultiHeadAttention(X) = (head; @ head,... ©head;,)W?  (10.19)
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| j_ Multihead Attention
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i@i Transformer Block
N

m A Transformer block includes
A multihead self-attention layer
A feedforward layer
Residual connections
Normalizing Layer (Layer Norm)
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j_ Feedforward layer
EN

m Contains N position-wise network, one for each
position
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j_ Residual Connections
El

m Adding a layer’s input to its output vector before
passing it forward

o S \

! A
" Transformer ( Layer Normalize )
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connection [g g g ]

A

N e e e e e e e e e e e e e e o

|
|
|
|
I
|
: ( Layer Normalize ]
|
|
|
|
|
\

L
Residual
connection




i@:i Layer Norm
24

m Normalize by the mean u and standard deviation o

LayerNorm = y X+ 3



§ & LLM with Transformers
2

m Sentiment analysis
The sentiment of the sentence “I like Jackie Chan” is:
Compare two probabilities calculated by Transformers

m P(positive| The sentiment of the sentence “I like Jackie
Chan” is:)

m P(negative|The sentiment of the sentence “I like Jackie
Chan” is:)
B Question Answering
Generate next tokens given the context
m Q: Who wrote the book “The Origin of Species"? A:

m P(w|Q: Who wrote the book “The Origin of Species”?
A:)



i@i Training Transformer Language Models
ER

Self-supervision (or self-training)

Next word long and thanks for all
¥ ¥ 1 T
Loss  FTog Yiong| 108 Yand] [logtmmanks] 108 Yfor | FIOYan| .- = 7D Low
Y 4 [ [ t=1
Softmax over
Vocabuiary @@ @J@ (ol ) @@ (ol )
Linear Layer N 7 N 7 N T / N / N /
Transformer
Block
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»
=, § § § §
Embeddings @)
So long and thanks for

DTN (INE] Training a transformer as a language model.

Leg = —Zyr[w]logy,[w]

weV
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.i Generation by Sampling
sl

m Two important factors in generation
Quality
Diversity

B Some sampling methods
Top-k sampling
Nucleus or top-p sampling
Temperature sampling
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1@ Top-k sampling
K

A simple generalization of greedy decoding.
m Choose in advance a number of words k

m For each word in the vocabulary I/, use the language
model to compute the likelihood of this word given the
context p(Wg|wey)

m Sort the words by their likelihood, and throw away any
word that is not one of the top k most probable words

m Renormalize the scores of the k words to be a legitimate
probability distribution.

m Randomly sample a word from within these remaining k
most-probable words according to its probability.
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¥ & Nucleus or top-p sampling

AEZ 2 1

m Keep not top k words, but the top p percent of the
probability mass

m Given a distribution P(ws|w.;), the top-p
vocabulary V(®) is the smallest set of words such

that
Z P(wlw.,) > p.

weV(p)



§ & Temperature sampling
o J

m Instead of computing the probability distribution by:
y = softmax(u)

we compute the probability distribution by:
y = softmax(u/7)

Useful properties of sofmax function: tends to push
high values toward 1 and low values toward O
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