

Transformers and Large Language Models

Phạm Quang Nhật Minh

minhpham0902@gmail.com

January 18, 2025

The Encoder-Decoder Model: Motivation

2

- Recall: Sequence labeling models

A dog is chasing a boy on the playground

A dog is chasing a boy on the playground

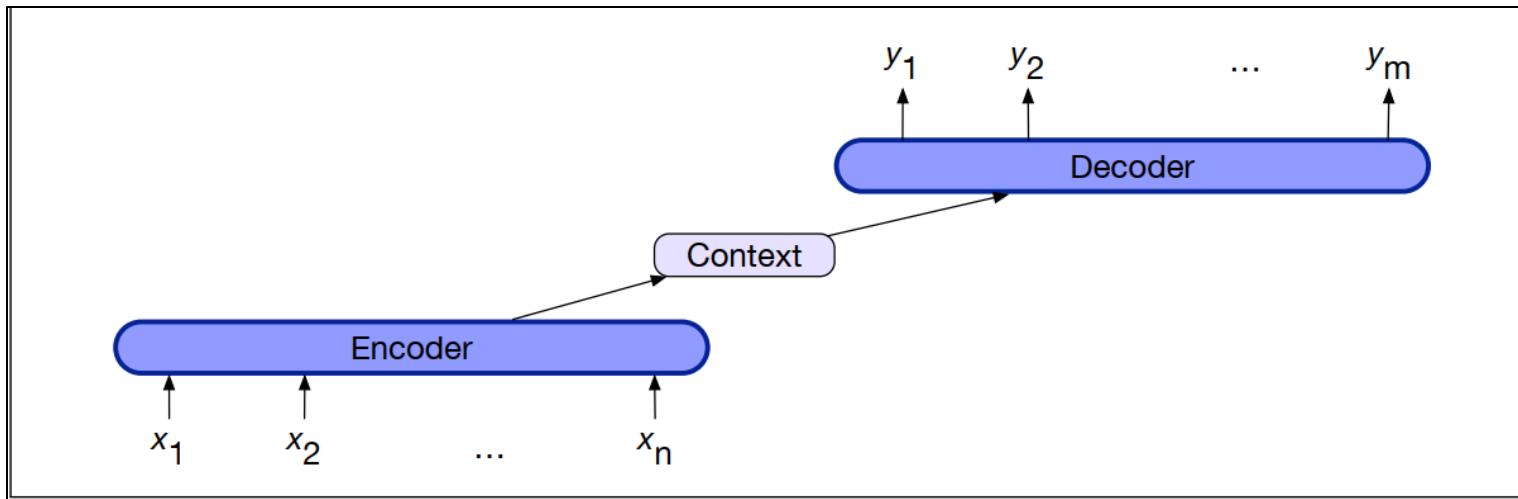
<u>A</u>	<u>dog</u>	<u>is</u>	<u>chasing</u>	<u>a</u>	<u>boy</u>	<u>on</u>	<u>the</u>	<u>playground</u>
Det	Noun	Aux	Verb	Det	Noun	Prep	Det	Noun

- How we can handle the task where the input sequence and the output sequence have different length?

Some text-to-text tasks

- Machine Translation
- Text summarization
- Title generation

The Encoder-Decoder Model

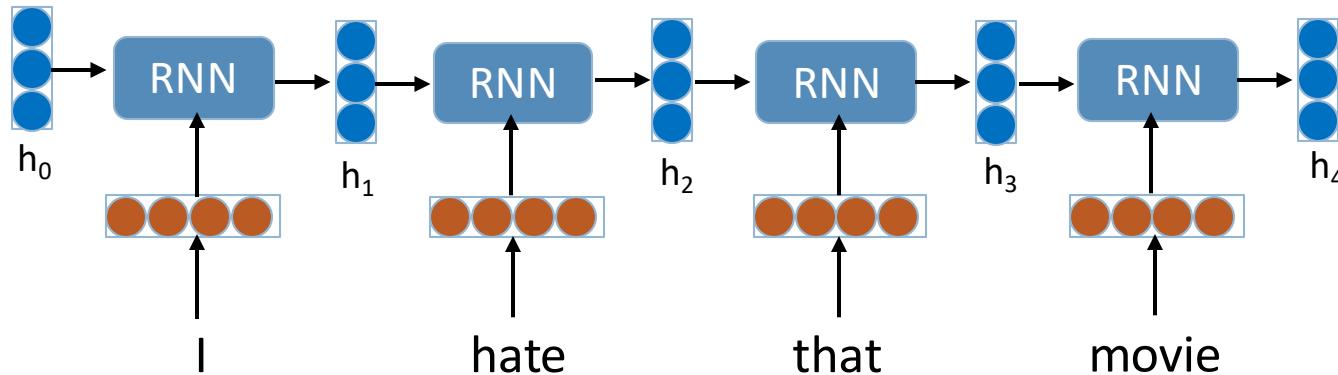


Components of the Encoder-Decoder Model:

- An encoder
- A context vector
- A decoder

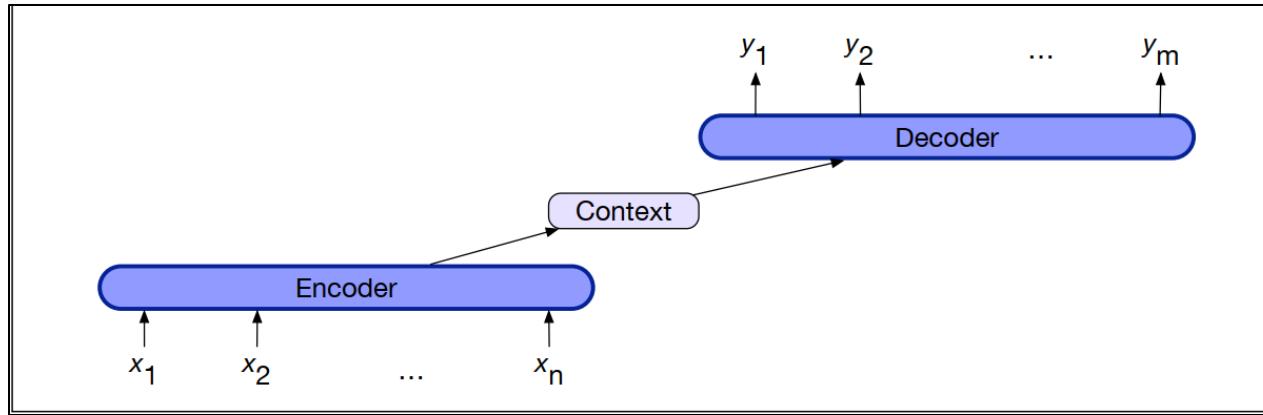
Encoder

- Given an input sequence, the encoder generates a sequence of hidden vectors (contextualized representations)

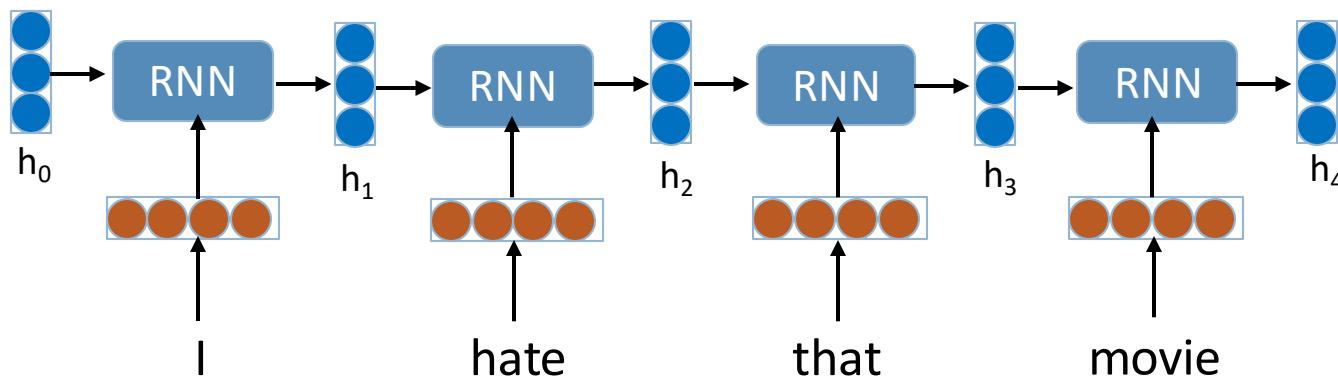


Context vector

6



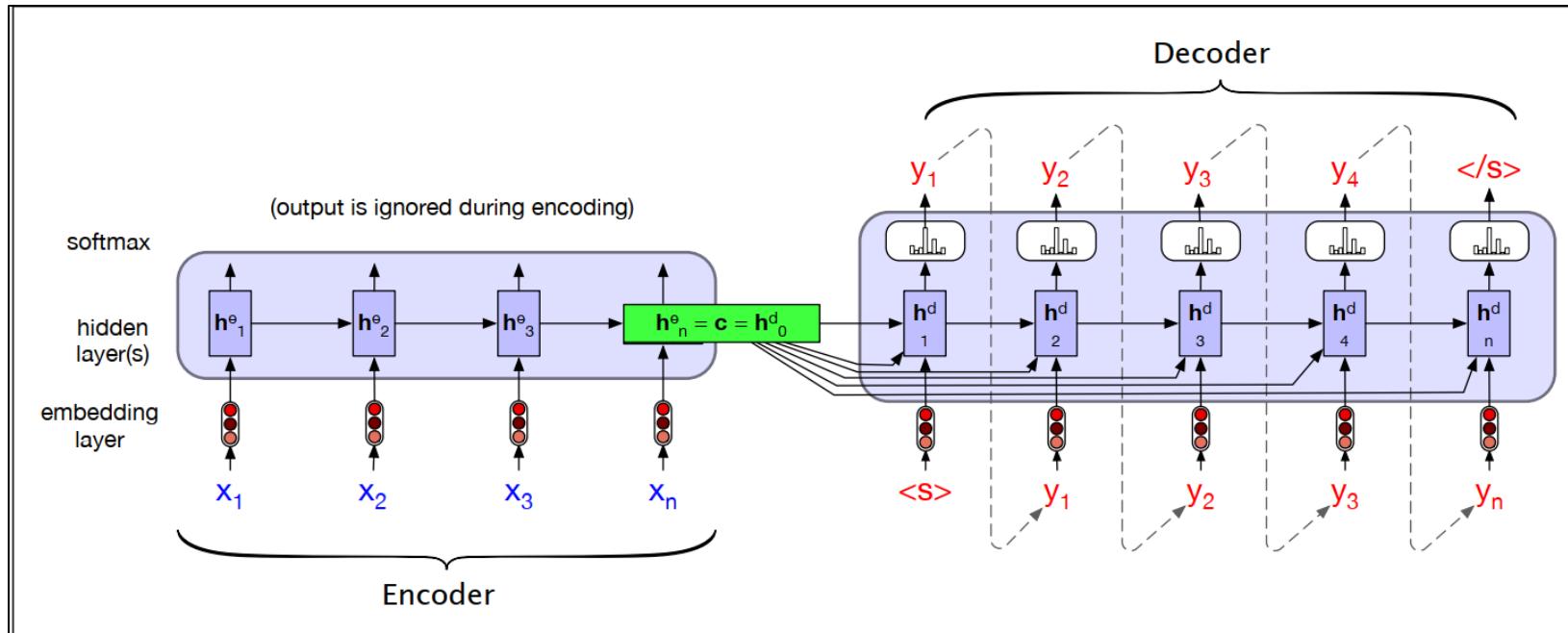
Context vector c is a function of h_1^n



Decoder

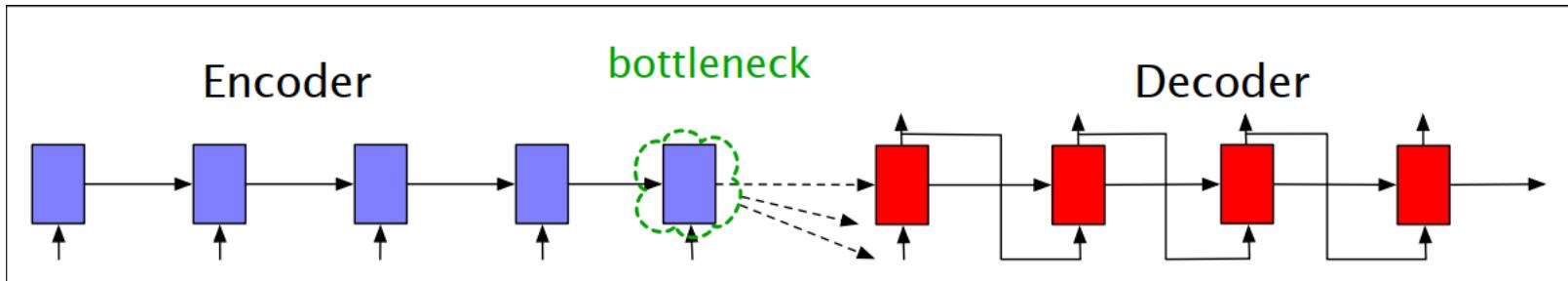
- A decoder accepts context vector c as input and generates an arbitrary length sequence of hidden states h_1^m

How the decoder generates output



Attention Mechanism

- Attention mechanism is to solve the bottleneck problem in vanilla encoder-decoder models
 - The last hidden state in the encoder is used as the context vector c
 - Information at the beginning of the sequence is not well represented



Attention Mechanism

- Idea: create a fixed-length context vector by taking a weighted sum of all encoder hidden states
 - The weights focus more on a particular part of the source text that is relevant for the token the decoder is currently producing

$$c_i = \sum_j \alpha_{ij} h_j$$

How to calculate attention weights α_{ij} ?

Dot production attention

11

- Measure how similar the decoder hidden state to the encoder hidden state

$$\text{score}(h_{i-1}^d, h_j^e) = h_{i-1}^d \cdot h_j^e$$

- Normalize scores with a softmax

$$\begin{aligned}\alpha_{ij} &= \text{softmax}(\text{score}(\mathbf{h}_{i-1}^d, \mathbf{h}_j^e) \ \forall j \in e) \\ &= \frac{\exp(\text{score}(\mathbf{h}_{i-1}^d, \mathbf{h}_j^e))}{\sum_k \exp(\text{score}(\mathbf{h}_{i-1}^d, \mathbf{h}_k^e))}\end{aligned}$$

Transformers: Intuition

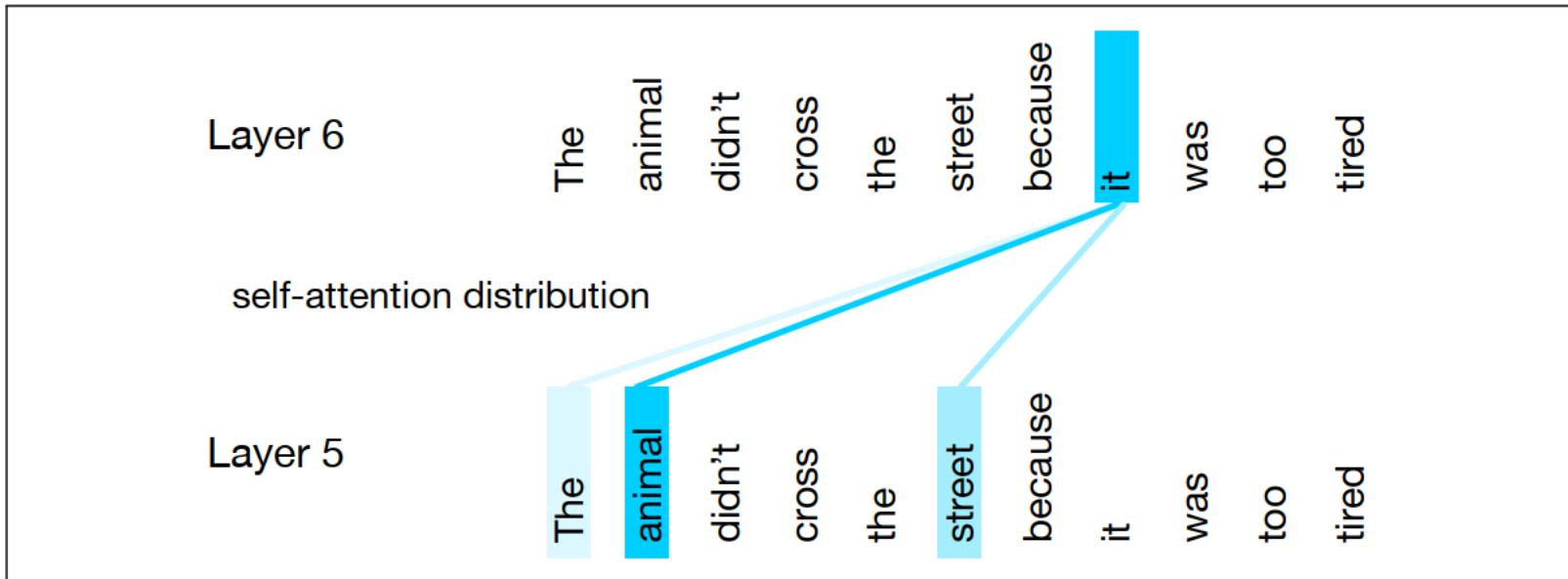
- Intuition: “across a series of layers, we build up richer and richer contextualized representations of the meanings of input words or tokens”
 - At each layer of a transformer, to compute the representation of a word i we combine information from the representation of i at the previous layer with information from the representations of the neighboring words
- We need a mechanism to:
 - Weight representations of the different words from the context at the prior level
 - Combine them to compute the representation of this layer

Self-Attention Mechanism

13

■ Self-attention

- Look the context
- Integrate the representations from words in that context from layer k-1 to build the

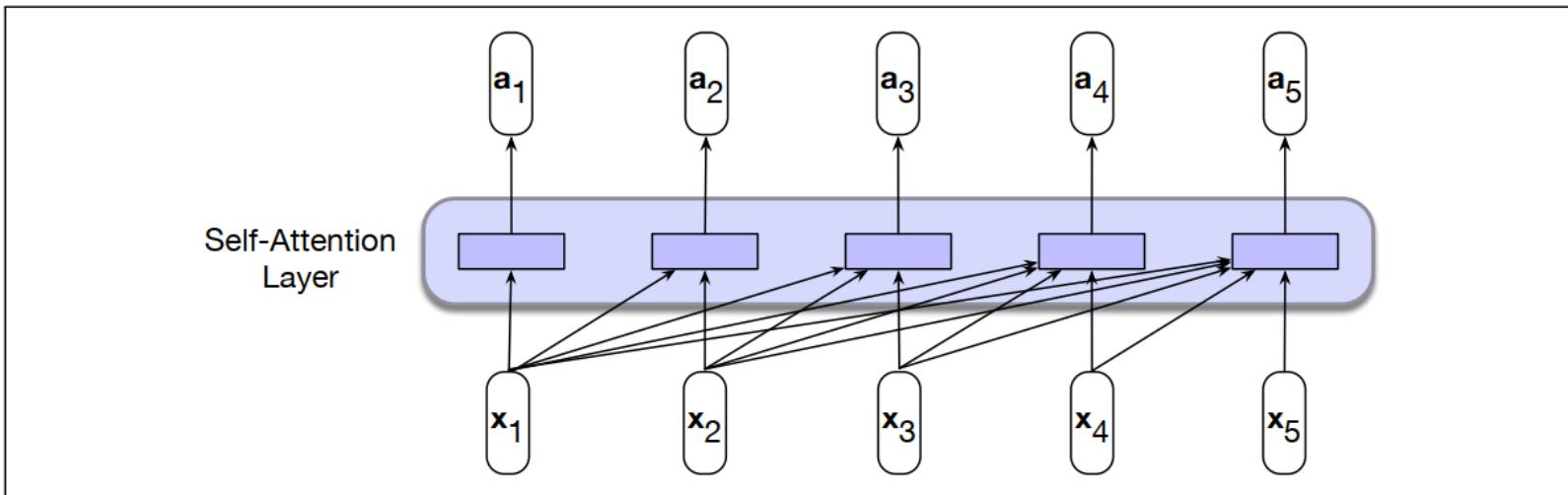


Causal or backward-looking self-attention

14

■ Two types of self-attention

- Backward-looking self-attention (e.g., GPT)
- Bidirectional self-attention (e.g., BERT)



Self-Attention in details (1)

- Based on the idea of the attention mechanism, but more sophisticated
- Map a **query** to an **output** by comparing the query with **keys**

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^Q; \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^K; \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^V \quad (10.11)$$

Final version: $\text{score}(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{d_k}} \quad (10.12)$

$$\alpha_{ij} = \text{softmax}(\text{score}(\mathbf{x}_i, \mathbf{x}_j)) \quad \forall j \leq i \quad (10.13)$$

$$\mathbf{a}_i = \sum_{j \leq i} \alpha_{ij} \mathbf{v}_j \quad (10.14)$$

Self-Attention in details (2)

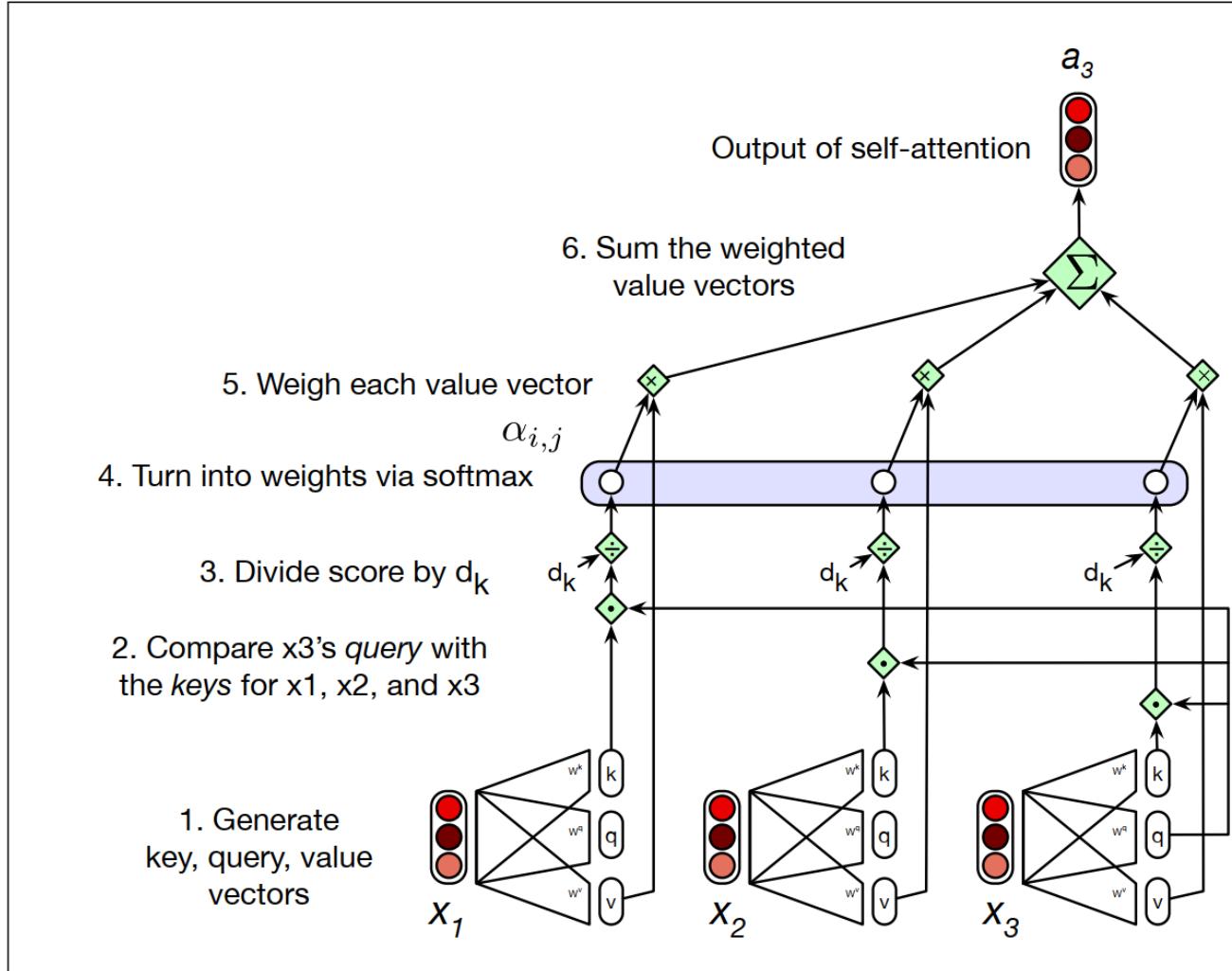


Figure 10.3 Calculating the value of a_3 , the third element of a sequence using causal (left-to-right) self-attention.

Multihead Attention

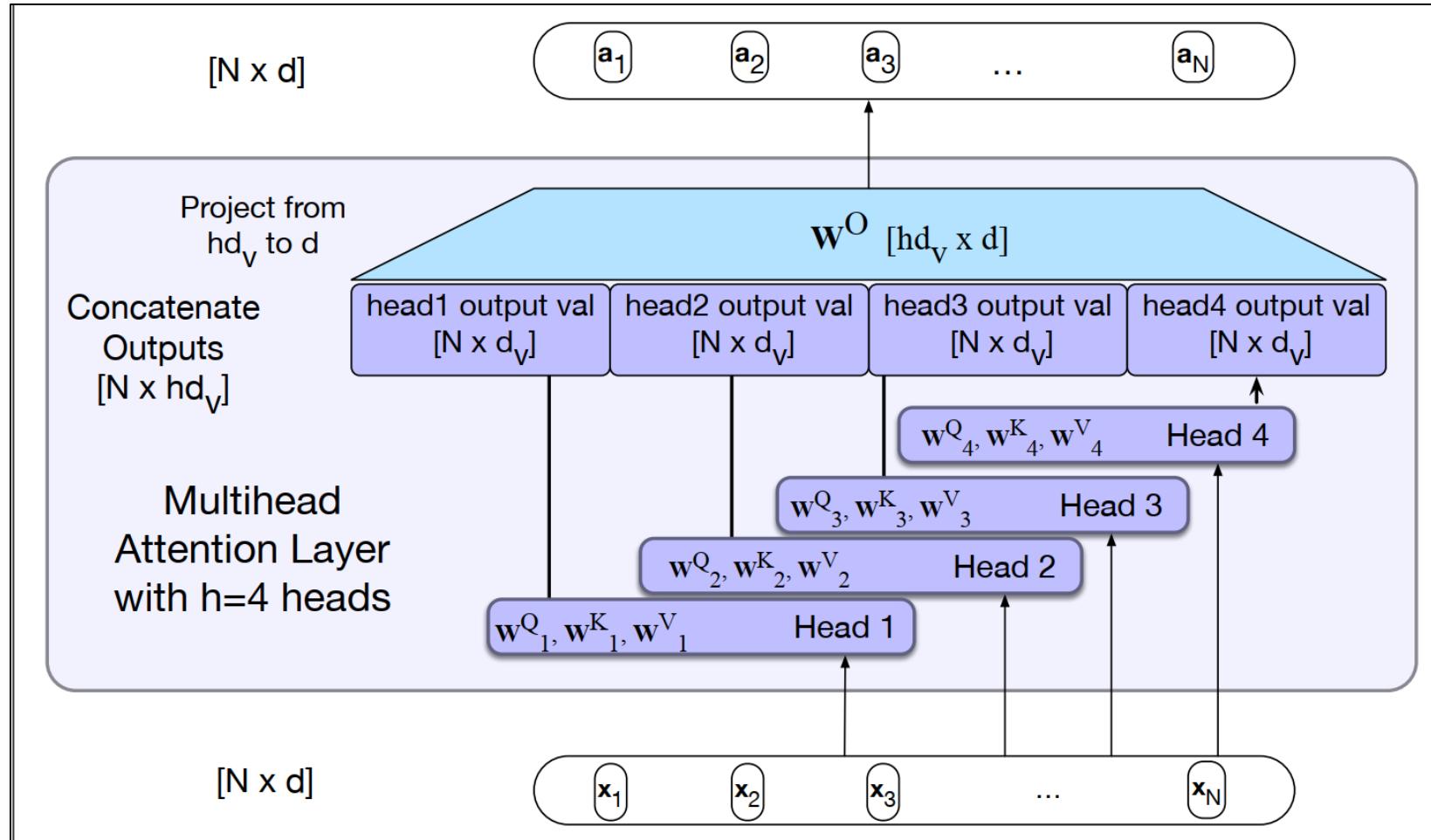
- Idea: use multi-heads to capture relationships between token in different ways: syntactic, semantic, discourse relationships
- Each head i is provided with its own sets of key, query, value matrices: $\Sigma_i^K, \Sigma_i^Q, \Sigma_i^V$

$$\mathbf{Q} = \mathbf{X}\mathbf{W}_i^Q ; \mathbf{K} = \mathbf{X}\mathbf{W}_i^K ; \mathbf{V} = \mathbf{X}\mathbf{W}_i^V \quad (10.17)$$

$$\mathbf{head}_i = \text{SelfAttention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) \quad (10.18)$$

$$\mathbf{A} = \text{MultiHeadAttention}(\mathbf{X}) = (\mathbf{head}_1 \oplus \mathbf{head}_2 \dots \oplus \mathbf{head}_h)\mathbf{W}^O \quad (10.19)$$

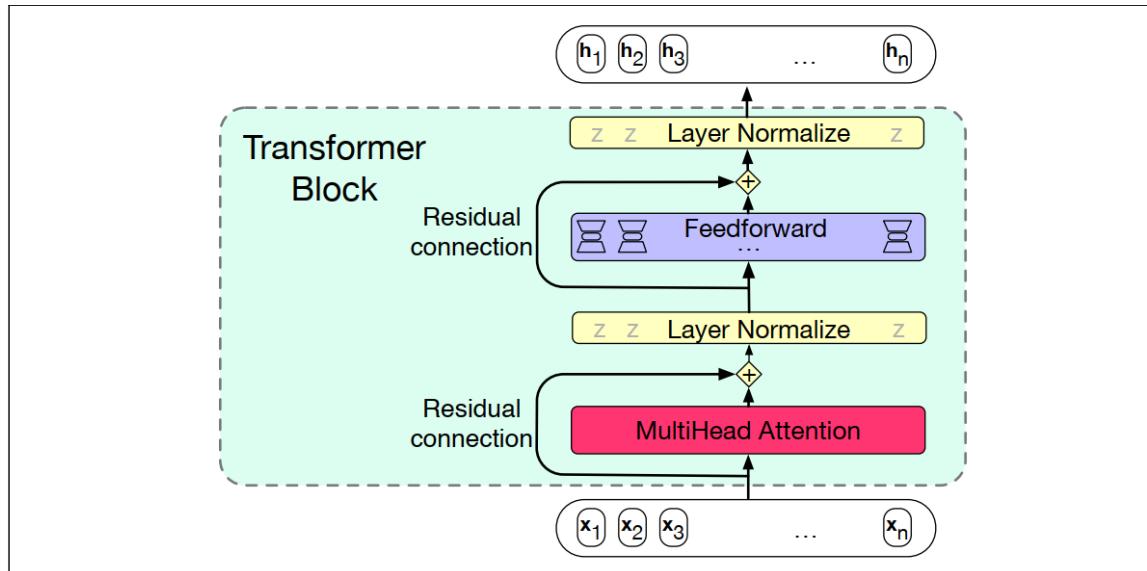
Multihead Attention



Transformer Block

19

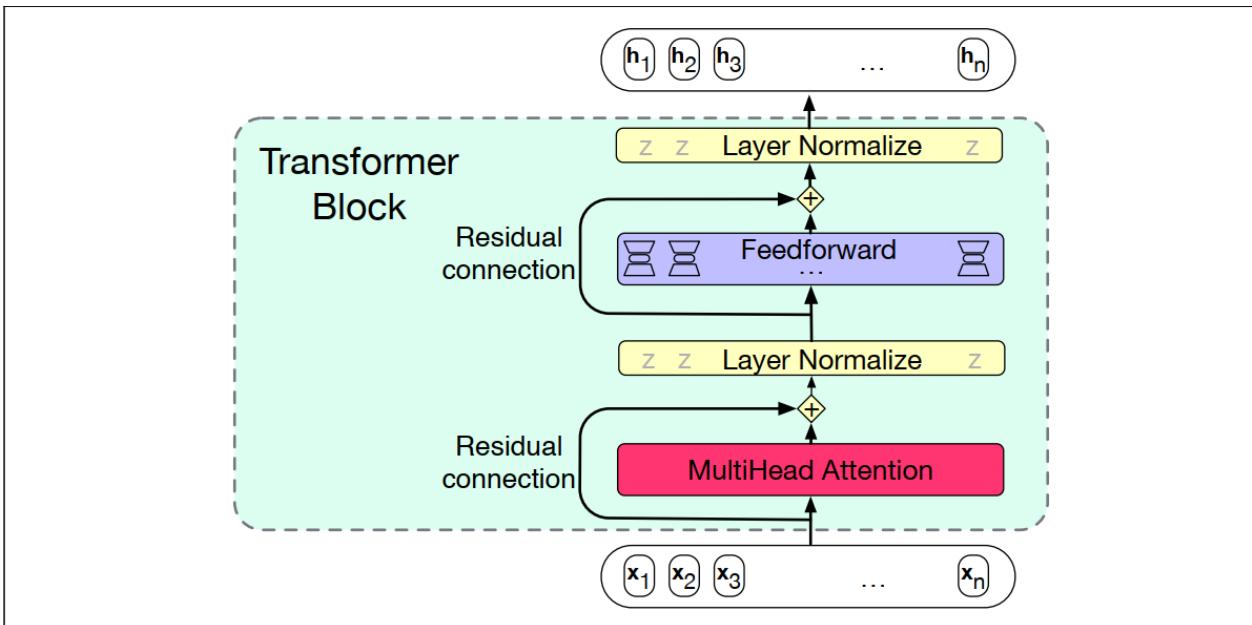
- A Transformer block includes
 - A multihead self-attention layer
 - A feedforward layer
 - Residual connections
 - Normalizing Layer (Layer Norm)



Feedforward layer

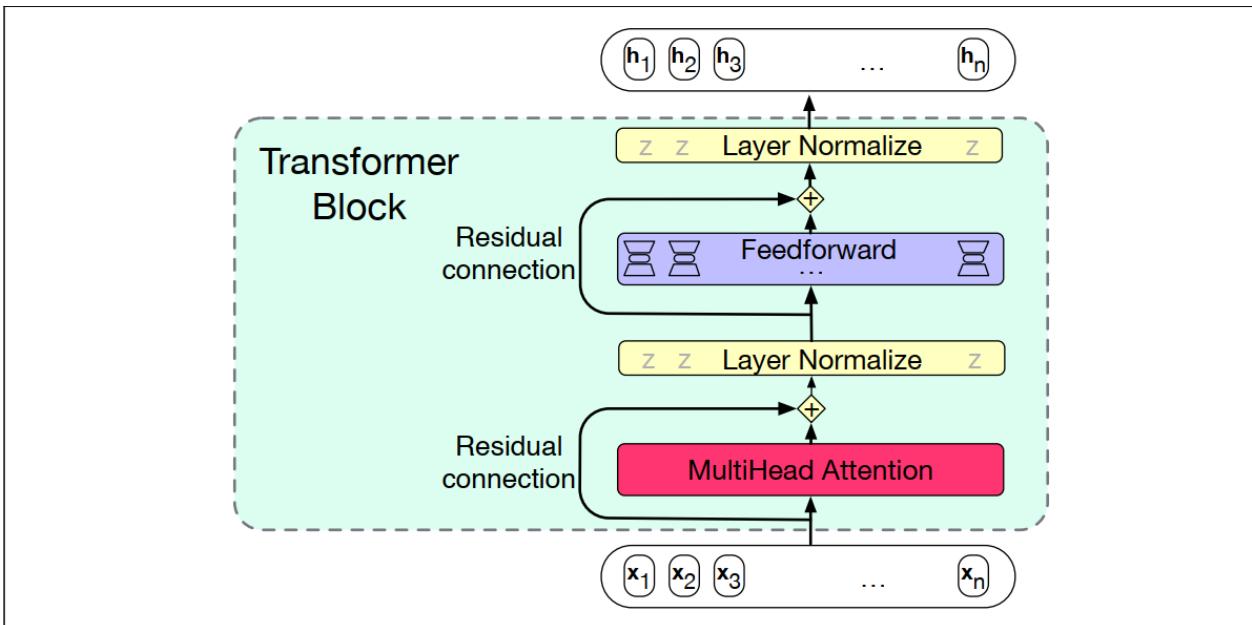
20

- Contains N position-wise network, one for each position



Residual Connections

- Adding a layer's input to its output vector before passing it forward



Layer Norm

- Normalize by the mean μ and standard deviation σ

$$\mu = \frac{1}{d_h} \sum_{i=1}^{d_h} x_i$$
$$\sigma = \sqrt{\frac{1}{d_h} \sum_{i=1}^{d_h} (x_i - \mu)^2}$$

$$\hat{\mathbf{x}} = \frac{(\mathbf{x} - \mu)}{\sigma}$$

$$\text{LayerNorm} = \gamma \hat{\mathbf{x}} + \beta$$

LLM with Transformers

■ Sentiment analysis

- The sentiment of the sentence “I like Jackie Chan” is:
- Compare two probabilities calculated by Transformers
 - $P(\text{positive} | \text{The sentiment of the sentence “I like Jackie Chan” is:})$
 - $P(\text{negative} | \text{The sentiment of the sentence “I like Jackie Chan” is:})$

■ Question Answering

- Generate next tokens given the context
 - Q: Who wrote the book “The Origin of Species”? A:
 - $P(w | Q: \text{Who wrote the book “The Origin of Species”? A:})$

Training Transformer Language Models

Self-supervision (or self-training)

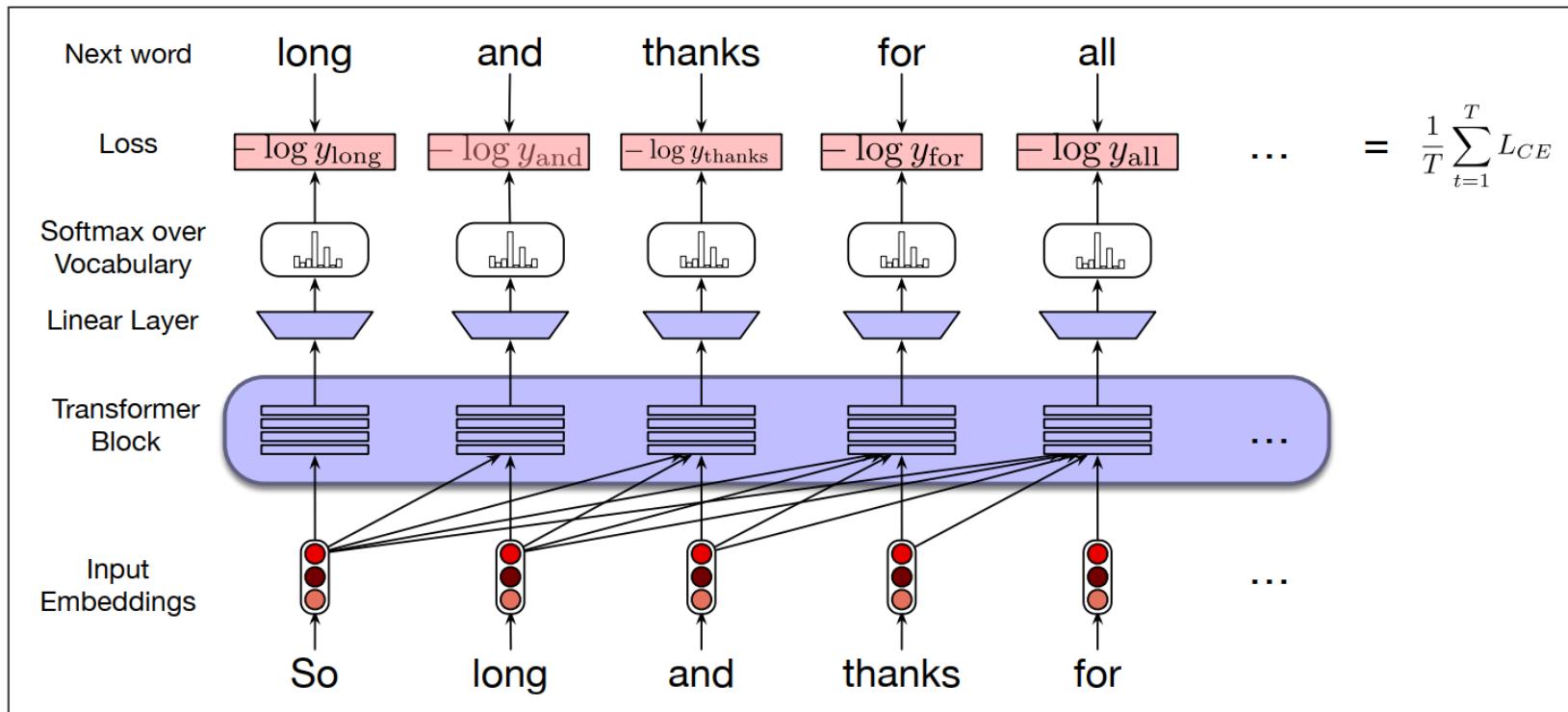


Figure 10.18 Training a transformer as a language model.

$$L_{CE} = - \sum_{w \in V} \mathbf{y}_t[w] \log \hat{\mathbf{y}}_t[w]$$

Generation by Sampling

- Two important factors in generation
 - Quality
 - Diversity
- Some sampling methods
 - Top-k sampling
 - Nucleus or top-p sampling
 - Temperature sampling

Top-k sampling

A simple generalization of greedy decoding.

- Choose in advance a number of words k
- For each word in the vocabulary V , use the language model to compute the likelihood of this word given the context $p(w_t | w_{<t})$
- Sort the words by their likelihood, and throw away any word that is not one of the top k most probable words
- Renormalize the scores of the k words to be a legitimate probability distribution.
- Randomly sample a word from within these remaining k most-probable words according to its probability.

Nucleus or top-p sampling

- Keep not top k words, but the top p percent of the probability mass
- Given a distribution $P(w_t | w_{<t})$, the top-p vocabulary $V^{(p)}$ is the smallest set of words such that

$$\sum_{w \in V^{(p)}} P(w | \mathbf{w}_{<t}) \geq p.$$

Temperature sampling

- Instead of computing the probability distribution by:

$$y = \text{softmax}(u)$$

we compute the probability distribution by:

$$y = \text{softmax}(u/\tau)$$

Useful properties of softmax function: tends to push high values toward 1 and low values toward 0