Transformers and Large Language Models

Pham Quang Nhat Minh

minhpham0902 @gmail.com

January 18, 2025

B/ \ 4 <
B

§ § The Encoder-Decoder Model: Motivation
e

m Recall: Sequence labeling models

A dog is chasing a boy on the playground

A

Det Noun Aux Verb Det Noun Prep Det Noun

m How we can handle the task where the input
sequence and the output sequence have different
length?

_i@ Some text-to-text tasks
e
m Machine Translation

B Text summarization
m Title generation

% & The Encoder-Decoder Model
K.,

Y1 Y2 Ym

P i
C Decoder)

(Encoder)
i f }

X1 X2 X

Components of the Encoder-Decoder Model:

e An encoder
* A context vector
e A decoder

¥ & Encoder
s 5

m Given an input sequence, the encoder generates a
sequence of hiven vectors (contextualized
representations)

C

Decoder

Encoder

)

Xn

that

_i@ Decoder
B
m A decoder accepts context vector ¢ as input and

generates an arbitrary length sequence of hidden
states h{"

20 aQ‘

| j_ How the decoder generates output

Decoder
A
~ TN
E] P Y
// | // | // : // |
Yi L Y2 | Y3 o Yg | </s>
(output is ignored during encoding) Ve A ! A : [} I[4 : 4
[
softmax (Qn] | m : (od) : L oo :
4 t) 7 ot
d d d d d
hidden he, > he, > he, he,-c-hd, | > ': —— hﬂJ o :J N ': . *:]
layer(s) Lrl) § | R | L_“ : “— :
embedding = | l : |
|
layer @ : | : @ |
I | |
|
X1 X2 X3)(n <S> : ‘y1 i /‘y2 : /’ys : /(yn
\—— __/ l\// e g lk//
—~
Encoder

i Attention Mechanism
Lo

m Attention mechanism is to solve the bottleneck
problem in vanila encoder-decoder models

The last hidden state in the encoder is used as the context
vector ¢

Information at the beginning of the sequence is not well
represented

Encoder bottleneck

- e~
’
i \
I
- - - LI - -
L > > > >
’ .
\ [S
Pl -
Y .
* -'\?‘ -~
h‘h

¥ & Attention Mechanism
oy
m |dea: create a fixed-length context vector by taking a

weighted sum of all encoder hidden states

The weights focus more on a particular part of the source
text that is relevant for the token the decoder is currently

producing
Ci = 2 al]h]

J
How to caculate attention weights «;;?

_i Dot production attention
El N

m Measure how similar the decoder hidden state to
the encoder hidden state

score(hl 1r]) he

B Normalize scores with a softmax

o;j = softmax(score(h? 1,h5) Vj€e)

exp(score(h?_,, h’

> exp(score(hl (,hy))

3

‘i Transformers: Intution

m Intuition: “across a series of layers, we build up
richer and richer contextualized representations of
the meanings of input words or tokens”

At each layer of a transformer, to compute the
representation of a word i we combine information from
the representation of i at the previous layer with

information from the representations of the neighboring
words

m We need a mechanism to:

Weight representations of the different words from the
context at the prior level

Combine them to compute the representation of this layer

i@ Self-Attention Mechanism
sy

m Self-attention
Look the context

Integrate the representations from words in that context from
layer k-1 to build the

Layer 6

The
animal
didn’t
Cross
the
street
because
was

too

tired

it

self-attention distribution

Layer 5

The
animal
didn’t
Cross
the
street
because
it

was
too
tired

3

§ & Causal or backward-looking self-attention
[]

m Two types of self-attention
Backward-looking self-attention (e.g., GPT)
Bidirectional self-attention (e.g., BERT)

Self-Attention | |] | l/’J %:
Layer -1 TN 7 A ——

§ & Self-Attention in details (1)
s ...

m Based on the idea of the attention mechanism, but
more sophisticated

m Map a query to an ouput by comparing the query

with keys
qi:x;WQ;k,- = x;WK;v,-:xI-WV (10.11)
Final verson: score(x;,X;) = % K; (10.12)
Vi
o;j = softmax(score(x;,x;)) Vj<i (10.13)
a, = Z(X{j\lj (10.14)
J=i

ii Self-Attention in details (2)

Output of self-attention

6. Sum the weighted
value vectors

5. Weigh each value vector
Qi j
4. Turn into weights via softmax

3. Divide score by d, d

2. Compare x3’s query with
the keys for x1, x2, and x3

— 6 |
L}g @ o<

IO CEIIR] Calculating the value of a3, the third element of a sequence using causal (left-
to-right) self-attention.

_i Multihead Attention
FEEEZ 2 1
m Idea: use multi-heads to capture relationships

between token in different ways: syntactic,
semantic, discourse relationships

m Each head i is provided with its own sets of key,
query, value matrices: Z{{, ZiQ, Z}/

Q=XWZ; K=XWK; v=xXwW' (017
head; = SelfAttention(Q, K, V) (10.18)
A = MultiHeadAttention(X) = (head; @ head,... ©head;,)W? (10.19)

2
[0) QO‘

| j_ Multihead Attention

[N x d] (>

4 A
Project from 0
hd,, to d W [hd, x d] \
Concatenate head1 output val | head? output val | head3 output val | head4 output val
Outputs { [Nxd,]] [Nxd] I [N xd] :[[Nxd,] J
[N x hd,] A

[w, wk, wY, Head 4 J

Head 3 |

Multinead
Attention Layer
with h=4 heads

[we, w

Q wK wV
W 3,w S)W 3

Head 2

[N x d] C)

i@i Transformer Block
N

m A Transformer block includes
A multihead self-attention layer
A feedforward layer
Residual connections
Normalizing Layer (Layer Norm)

(B)E)
e S .

, .
| Transformer [Layer Normalize - |

. Block 5?

I esidua

: connection [g g Feed_f_c_)nNard g]
L

I

I

I

[Layer Normalize]

: Residual
connection

N e e e e e e e e e e e e

j_ Feedforward layer
EN

m Contains N position-wise network, one for each
position

o S \

! A
" Transformer (Layer Normalize)

! >
Block Residual Feed?omfard
connection [g g g]

A

N e e e e e e e e e e e e e e o

|
|
|
|
I
|
: (Layer Normalize]
|
|
|
|
|
\

L
Residual
connection

j_ Residual Connections
El

m Adding a layer’s input to its output vector before
passing it forward

o S \

! A
" Transformer (Layer Normalize)

! >
Block Residual Feed?omfard
connection [g g g]

A

N e e e e e e e e e e e e e e o

|
|
|
|
I
|
: (Layer Normalize]
|
|
|
|
|
\

L
Residual
connection

i@:i Layer Norm
24

m Normalize by the mean u and standard deviation o

LayerNorm = y X+ 3

§ & LLM with Transformers
2

m Sentiment analysis
The sentiment of the sentence “I like Jackie Chan” is:
Compare two probabilities calculated by Transformers

m P(positive| The sentiment of the sentence “I like Jackie
Chan” is:)

m P(negative|The sentiment of the sentence “I like Jackie
Chan” is:)
B Question Answering
Generate next tokens given the context
m Q: Who wrote the book “The Origin of Species"? A:

m P(w|Q: Who wrote the book “The Origin of Species”?
A:)

i@i Training Transformer Language Models
ER

Self-supervision (or self-training)

Next word long and thanks for all
¥ ¥ 1 T
Loss FTog Yiong| 108 Yand] [logtmmanks] 108 Yfor | FIOYan| .- = 7D Low
Y 4 [[t=1
Softmax over
Vocabuiary @@ @J@ (ol) @@ (ol)
Linear Layer N 7 N 7 N T / N / N /
Transformer
Block
) _——1 _——""1
»
=, § § § §
Embeddings @)
So long and thanks for

DTN (INE] Training a transformer as a language model.

Leg = —Zyr[w]logy,[w]

weV

3

.i Generation by Sampling
sl

m Two important factors in generation
Quality
Diversity

B Some sampling methods
Top-k sampling
Nucleus or top-p sampling
Temperature sampling

3

1@ Top-k sampling
K

A simple generalization of greedy decoding.
m Choose in advance a number of words k

m For each word in the vocabulary I/, use the language
model to compute the likelihood of this word given the
context p(Wg|wey)

m Sort the words by their likelihood, and throw away any
word that is not one of the top k most probable words

m Renormalize the scores of the k words to be a legitimate
probability distribution.

m Randomly sample a word from within these remaining k
most-probable words according to its probability.

3

¥ & Nucleus or top-p sampling

AEZ 2 1

m Keep not top k words, but the top p percent of the
probability mass

m Given a distribution P(ws|w.;), the top-p
vocabulary V(®) is the smallest set of words such

that
Z P(wlw.,) > p.

weV(p)

§ & Temperature sampling
o J

m Instead of computing the probability distribution by:
y = softmax(u)

we compute the probability distribution by:
y = softmax(u/7)

Useful properties of sofmax function: tends to push
high values toward 1 and low values toward O

	Slide 1: Transformers and Large Language Models
	Slide 2: The Encoder-Decoder Model: Motivation
	Slide 3: Some text-to-text tasks
	Slide 4: The Encoder-Decoder Model
	Slide 5: Encoder
	Slide 6: Context vector
	Slide 7: Decoder
	Slide 8: How the decoder generates output
	Slide 9: Attention Mechanism
	Slide 10: Attention Mechanism
	Slide 11: Dot production attention
	Slide 12: Transformers: Intution
	Slide 13: Self-Attention Mechanism
	Slide 14: Causal or backward-looking self-attention
	Slide 15: Self-Attention in details (1)
	Slide 16: Self-Attention in details (2)
	Slide 17: Multihead Attention
	Slide 18: Multihead Attention
	Slide 19: Transformer Block
	Slide 20: Feedforward layer
	Slide 21: Residual Connections
	Slide 22: Layer Norm
	Slide 23: LLM with Transformers
	Slide 24: Training Transformer Language Models
	Slide 25: Generation by Sampling
	Slide 26: Top-k sampling
	Slide 27: ﻿Nucleus or top-p sampling
	Slide 28: Temperature sampling

