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i Introduction to Question Answering (QA)
KN

m Humans ask computers for answers

m QA systems fulfill information needs

m Early QA: databases, simple parsing

m IBM Watson: Jeopardy! champion (2011)
m Modern QA uses large language models
m QA closely linked with search engines
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.i Types of Questions in QA
TR

m Factoid questions: short factual answers
Examples: "Where is Louvre Museum?”

m Modern systems use large language models
Prompting LLMs for fact-based generation
LLMs encode facts in their parameters
Not all questions suited for prompting
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§ & Challenges with Large Language Models
TR

LLMs can hallucinate incorrect answers
Hallucinations sound reasonable but false
LLMs lack calibration for answer confidence
Proprietary data inaccessible via LLM prompts

Static models fail with recent information
Retrieval-Augmented Generation (RAG) addresses issues
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# & Information Retrieval (IR) Basics
s J

IR retrieves documents based on queries
Query: user's information need expressed textually
Document: unit of indexed retrievable text
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m Collection: set of all indexed documents

m High-level architecture includes ranking system
N

Uses vector space models for similarity scoring
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_i Term Weighting in IR

m Raw word counts not used directly

m Term Frequency-Inverse Document Frequency (TF-

IDF) applied
TF measures word frequency in document
IDF reduces weight of common words
Formula: TF-IDF=TFxIDF

Word df idf
Romeo | 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21  0.246
wit 34  0.037
fool 36 0.012
good 37 0

sweet 37



§ & TF-IDF and Cosine Similarity
2
m Documents/queries represented as vectors

m Cosine similarity measures vector alignment:

q-d
cos(q,d) = 1411d]

m Higher cosine = better document match

Example: Ranking documents by cosine score
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§ & Example
s J

Query
word cnt tf df idf tf-idf n’lized = tf-idf/|q|

sweet 1 1 3 0.125 0.125 0.383
nurse O 0O 2 0.301 0O 0
love 1 1 2 0.301 0.301 0.924
how 0O 0 1 0.602 0 0
sorrow O 0O 1 0.602 0 0
is O 0 1 0.602 0 0
lq| = V. 1252 +.3012 = .326
Document 1 Document 2

word cnt tf tf-idf n’lized X q cnt tf tf-idf n’lized xq
sweet 2 1.301 0.163 0.357  0.137 1 1.000 0.125 0.203  0.0779
nurse 1 1.000 0.301 0.661 0 0 O 0 0 0
love 1 1.000 0.301 0.661  0.610 0 O 0 0 0
how 0O O 0 0 0 0 O 0 0 0
sorrow (0 0 0 0 0 I 1.000 0.602 0.979 0O
is 0O O 0 0 0 0O O 0 0 0
di] = V.1632 4 .3012 +.3012 = .456 2| = /1252 4 .6022 = .615

Cosine: > of column: 0.747 Cosine: ) of column: 0.0779

10Tl E®Y  Computation of tf-idf cosine score between the query and nano-documents 1 (0.747) and 2
(0.0779), using Eq. 14.4, Eq. 14.5, Eq. 14.6 and Eq. 14.9.



§ & Inverted Index in IR
oy ..

m Efficiently finds documents containing query terms
m Dictionary stores terms and metadata

m Postings list maps terms to document IDs

m Includes term frequencies and positions

m Alternatives include bigram indexing, hashing
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§ & Evaluating IR Systems
oo f

m Metrics: Precision and Recall defined as:
Precision = Relevant / Retrieved documents
Recall = Relevant / Total relevant documents

m Metrics adapted to ranked retrieval systems
Mean Average Precision (MAP) evaluates ranking quality



3

_i Dense Vector Representations
o

m Sparse vectors limited by vocabulary mismatch
m Dense embeddings handle synonyms effectively
m BERT encoders create dense vector representations

m Query and document jointly encoded for relevance
scoring
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§ & Bi-Encoding vs. Joint Encoding
..

m Joint Encoding
Query + document encoded together
Accurate but computationally expensive

m Bi-Encoding
Separate encoders for query/document
Precomputed document embeddings stored
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_i Intermediate Approaches to Dense Retrieval
El

m BM25 First Pass:
Ranks documents using sparse methods

m ColBERT Approach:

Encodes tokens individually into vectors
Scores based on token-level similarity



§ & Retrieval-Augmented Generation (RAG)
) }
R 1

m Two Components:
Retriever fetches relevant passages/documents

Reader generates answers from retrieved text

m Example Workflow:
Query - Retrieve - Generate Answer

query
Retriever > Reader/
Q: When was * docs ' Generator
the premiere of —— e .
The Magic Flute? 2 e
N Relevant prompt

B
Indexed Docs Paes




_i Advantages of RAG
s
Q Reduces hallucination by grounding answers

0 Combines private/public data effectively
Q Handles dynamic or proprietary datasets
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# & Prompt Engineering in RAG
JEREC
Prompt Engineering in RAG:

m Retrieved passage(s) as input context
m Question appended after passages

Model generates answer token-by-token

Schematic of a RAG Prompt

retrieved passage 1

retrieved passage 2

retrieved passage n

Based on these texts, answer this question: Q: Who wrote
the book ‘‘The Origin of Species"? A:
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§ & Evaluation Metrics for QA Systems
iz
m Exact Match (% matching gold answer exactly)

m Token F1 Score (partial overlap measure)
m Mean Reciprocal Rank (MRR for ranked answers)



i@ Historical Evolution of QA Systems
RN

m Early systems used structured databases (1960s)

m Parsing + keyword matching approaches emerged
later

m Rise of web-driven IR systems in the 1990s

Examples: BASEBALL, LUNAR systems



_i Modern Neural QA Systems
JE 2 I

m Neural reading comprehension introduced in mid-
2010s

m Dense retrieval + span-based readers became
standard

m End-to-end architectures like RAG dominate today



§ & Summary of Key Concepts
24

m QA fulfills user information needs effectively
m IR retrieves ranked documents based on queries
m Dense vectors address vocabulary mismatch
B RAG integrates retrieval with generative models
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