

Question Answering, Information Retrieval and Retrieval-Augmented-Generation

Phạm Quang Nhật Minh

minhpham0902@gmail.com

Introduction to Question Answering (QA)

2

- Humans ask computers for answers
- QA systems fulfill information needs
- Early QA: databases, simple parsing
- IBM Watson: Jeopardy! champion (2011)
- Modern QA uses large language models
- QA closely linked with search engines

Types of Questions in QA

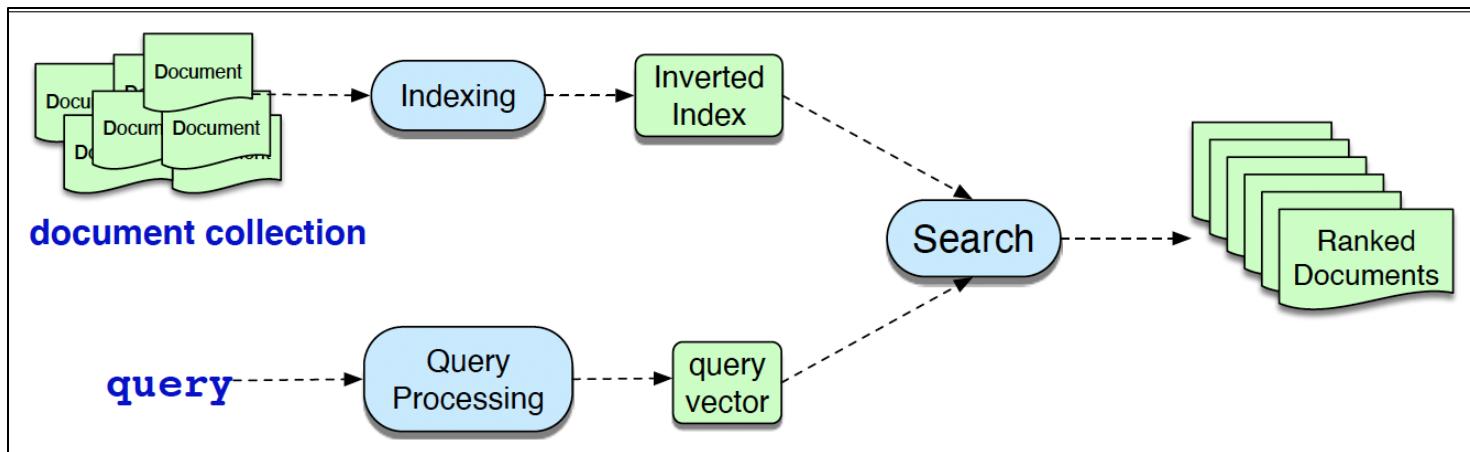
- Factoid questions: short factual answers
 - Examples: "Where is Louvre Museum?"
- Modern systems use large language models
 - Prompting LLMs for fact-based generation
 - LLMs encode facts in their parameters
 - Not all questions suited for prompting

Challenges with Large Language Models

- LLMs can hallucinate incorrect answers
- Hallucinations sound reasonable but false
- LLMs lack calibration for answer confidence
- Proprietary data inaccessible via LLM prompts
- Static models fail with recent information
 - Retrieval-Augmented Generation (RAG) addresses issues

Information Retrieval (IR) Basics

- IR retrieves documents based on queries
- Query: user's information need expressed textually
- Document: unit of indexed retrievable text
- Collection: set of all indexed documents
- High-level architecture includes ranking system
- Uses vector space models for similarity scoring



Term Weighting in IR

- Raw word counts not used directly
- Term Frequency-Inverse Document Frequency (TF-IDF) applied
 - TF measures word frequency in document
 - IDF reduces weight of common words
 - Formula: $TF-IDF = TF \times IDF$

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

TF-IDF and Cosine Similarity

7

- Documents/queries represented as vectors
- Cosine similarity measures vector alignment:

$$\cos(q, d) = \frac{\mathbf{q} \cdot \mathbf{d}}{|\mathbf{q}||\mathbf{d}|}$$

- Higher cosine = better document match
 - Example: Ranking documents by cosine score

Example

Query						
word	cnt	tf	df	idf	tf-idf	n'lized = tf-idf/ q
sweet	1	1	3	0.125	0.125	0.383
nurse	0	0	2	0.301	0	0
love	1	1	2	0.301	0.301	0.924
how	0	0	1	0.602	0	0
sorrow	0	0	1	0.602	0	0
is	0	0	1	0.602	0	0
$ q = \sqrt{.125^2 + .301^2} = .326$						

Document 1					Document 2					
word	cnt	tf	tf-idf	n'lized	× q	cnt	tf	tf-idf	n'lized	× q
sweet	2	1.301	0.163	0.357	0.137	1	1.000	0.125	0.203	0.0779
nurse	1	1.000	0.301	0.661	0	0	0	0	0	0
love	1	1.000	0.301	0.661	0.610	0	0	0	0	0
how	0	0	0	0	0	0	0	0	0	0
sorrow	0	0	0	0	0	1	1.000	0.602	0.979	0
is	0	0	0	0	0	0	0	0	0	0
$ d_1 = \sqrt{.163^2 + .301^2 + .301^2} = .456$					$ d_2 = \sqrt{.125^2 + .602^2} = .615$					

Cosine: \sum of column: **0.747**Cosine: \sum of column: **0.0779**

Figure 14.2 Computation of tf-idf cosine score between the query and nano-documents 1 (0.747) and 2 (0.0779), using Eq. 14.4, Eq. 14.5, Eq. 14.6 and Eq. 14.9.

Inverted Index in IR

- Efficiently finds documents containing query terms
- Dictionary stores terms and metadata
- Postings list maps terms to document IDs
- Includes term frequencies and positions
- Alternatives include bigram indexing, hashing

Evaluating IR Systems

- Metrics: Precision and Recall defined as:
 - Precision = Relevant / Retrieved documents
 - Recall = Relevant / Total relevant documents
- Metrics adapted to ranked retrieval systems
 - Mean Average Precision (MAP) evaluates ranking quality

Dense Vector Representations

- Sparse vectors limited by vocabulary mismatch
- Dense embeddings handle synonyms effectively
- BERT encoders create dense vector representations
- Query and document jointly encoded for relevance scoring

Bi-Encoding vs. Joint Encoding

■ Joint Encoding

- Query + document encoded together
- Accurate but computationally expensive

■ Bi-Encoding

- Separate encoders for query/document
- Precomputed document embeddings stored

Intermediate Approaches to Dense Retrieval

- BM25 First Pass:
 - Ranks documents using sparse methods
- ColBERT Approach:
 - Encodes tokens individually into vectors
 - Scores based on token-level similarity

Retrieval-Augmented Generation (RAG)

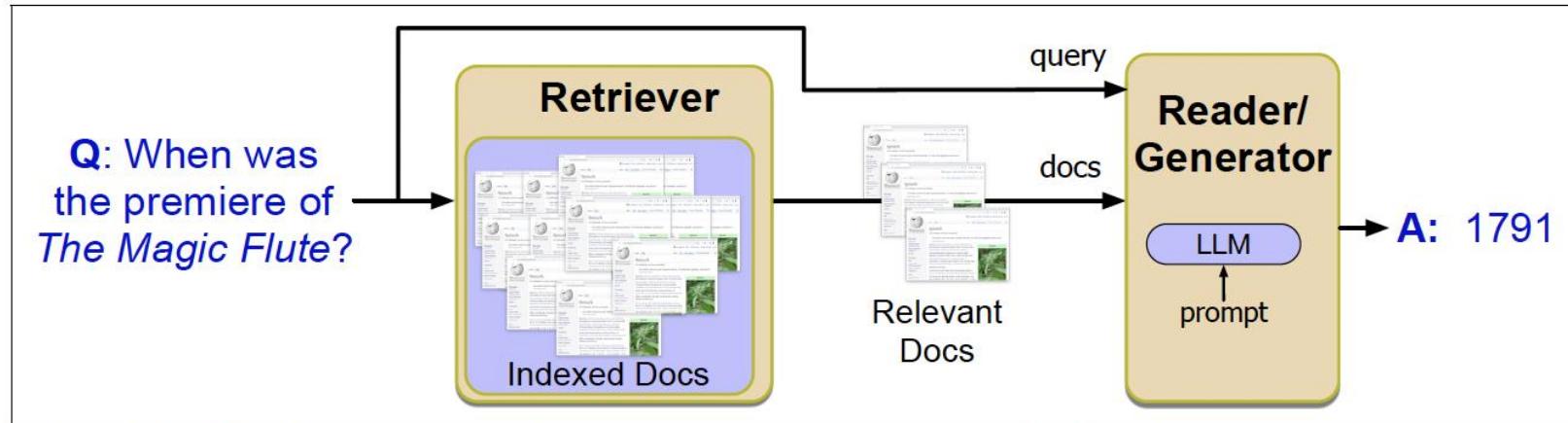
14

■ Two Components:

- Retriever fetches relevant passages/documents
- Reader generates answers from retrieved text

■ Example Workflow:

- Query → Retrieve → Generate Answer



Advantages of RAG

- ❑ Reduces hallucination by grounding answers
- ❑ Combines private/public data effectively
- ❑ Handles dynamic or proprietary datasets

Prompt Engineering in RAG

Prompt Engineering in RAG:

- Retrieved passage(s) as input context
- Question appended after passages

Model generates answer token-by-token

Schematic of a RAG Prompt

retrieved passage 1

retrieved passage 2

...

retrieved passage n

Based on these texts, answer this question: Q: Who wrote the book ‘‘The Origin of Species’’? A:

Evaluation Metrics for QA Systems

- Exact Match (% matching gold answer exactly)
- Token F1 Score (partial overlap measure)
- Mean Reciprocal Rank (MRR for ranked answers)

Historical Evolution of QA Systems

- Early systems used structured databases (1960s)
- Parsing + keyword matching approaches emerged later
- Rise of web-driven IR systems in the 1990s

Examples: BASEBALL, LUNAR systems

Modern Neural QA Systems

- Neural reading comprehension introduced in mid-2010s
- Dense retrieval + span-based readers became standard
- End-to-end architectures like RAG dominate today

Summary of Key Concepts

- QA fulfills user information needs effectively
- IR retrieves ranked documents based on queries
- Dense vectors address vocabulary mismatch
- RAG integrates retrieval with generative models