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Recursion

Today Objectives

I Introduce recursion and recursive algorithms

I Study well-known problems and solve them with recursive
algorithms

I Implement examples in C/C++.
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Recursion

Iteration

Iteration is a repetition of a mathematical or computational
procedure applied to the result of a previous application.

In programming, iteration is often referred to as looping, because
when a program iterates it loops to an earlier step. Iterative
approach uses for (...) or while (...) do loops to solve problems.

I Example: calculate the factorial of n.

I Solution: to use a loop to run an index i from 1 to n and
each iteration, we compute the factorial by multiplying the
value of i .
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Recursion

Iteration

Simple pseudo-code to calculate the factorial of an integer
factorial (n)

1: fac = 1
2: for i = 1→ n do
3: fac = fac ∗ i
4: end for
5: return fac
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Recursion

Iteration

Iteration gives a lot of advantages:

I Iteration allows to simplify algorithm by stating that we will
repeat certain steps until a pre-defined constraint has been
reached.

I This makes designing algorithms quicker and simpler because
they dont have to include lots of unnecessary steps.

I It is easy to conceptualize or track how a problem can be
solved iteratively.

Iteration is not the only way to deal with problems in which same
problems are repeated.
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Recursion

Iteration

Consider the following example: compute the factorial of a given
integer n

1 i n t f a c t o r i a l ( i n t n ){
2 i n t f a c = 1 ;
3 i n t i ;
4 f o r ( i =1; i<=n ; i ++)
5 f a c = f a c ∗ i ;
6 r e t u r n f a c ;
7 }

1 i n t f a c ( i n t n ) {
2 i f ( n == 1)
3 r e t u r n 1 ;
4 e l s e
5 r e t u r n n∗ f a c ( n−1);
6 }

I Less code and no iteration

I No local variable
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Recursion
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Recursion

Recursion

Definition

Recursion in mathematics or in computer science is the process of
repeating objects in a self-similar way.

Example 1

Assume that we have a definition of natural numbers as following:

I 0 ∈ N
I if n ∈ N then n + 1 ∈ N
I there are no other objects in the set N.

Due to this definition of natural numbers N, thus 0, 0 + 1 = 1 are
natural. Same for, 0+ 1 + 1 = 2 is natural, etc.
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Recursion

Recursion

A recursive defnition consists of two parts:

I In the first part, called the anchor or the base case, the basic
elements that are the building blocks of all other elements of
the set are listed.

I In the second part, rules are given that allow for the
construction of new objects out of basic elements or objects
that have already been constructed.

These rules are applied again and again to generate new objects.
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Recursion

Recursion

Example 2

In mathematics, the factorial of a non-negative integer n, denoted
by n!, is the product of all positive integers less than or equal to n.

I 0! = 1 → base case

I (n + 1)! = (n + 1)n! → rules for the construction of new
objects

According to this definition, we generate the sequence of the
numbers 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,...
are respectively the factorials of the numbers 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10,...
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Recursion

Recursion

Proving recursive solutions correct is related to mathematical
induction:

I Also closely related to proof by induction

I Start by proving a base case

I Then show that if it is true for case n, it must also be true for
case n+1
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Recursion

Recursion in Programming

I Methods can call other methods

I can a method call itself? Yes! This is called a recursive
method (function)

Recursive methods:
I Each call solves an identical problem

I the code is the same!
I successive calls solve smaller/simpler instances

I Every recursive algorithm has at least one base case
I a base case (often 1 or 0)
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Recursion

Recursive Methods

Definition

A function is recursive if it calls or defines itself during the
execution (direct way).

Compute the factorial of a given integer n

1 i n t f a c t o r i a l ( i n t n ) {
2 i f ( n == 1)
3 r e t u r n 1 ;
4 e l s e
5 r e t u r n n∗ f a c t o r i a l ( n−1);
6 }
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Recursion

Recursive Methods

1 i n t main ( ) {
2 u n s i g n e d i n t r = f a c t o r i a l ( 5 ) ;
3 }

The obtained results are as following:
Main factorial(5)
Call 1 factorial(4)
Call 2 factorial(3)
Call 3 factorial(2)
Call 4 factorial(1)

Result 4 1
Result 3 2*1
Result 2 3*2*1
Result 1 4*3*2*1
Result 5*4*3*2*1 = 120

Doan Nhat Quang Recursion 14 / 38



Recursion

Recursive Methods

1 i n t main ( ) {
2 u n s i g n e d i n t r = f a c t o r i a l ( 5 ) ;
3 }

The obtained results are as following:
Main factorial(5)
Call 1 factorial(4)
Call 2 factorial(3)
Call 3 factorial(2)
Call 4 factorial(1)

Result 4 1
Result 3 2*1
Result 2 3*2*1
Result 1 4*3*2*1
Result 5*4*3*2*1 = 120

Doan Nhat Quang Recursion 14 / 38



Recursion

Recursive Methods

Definition

A function is indirectly recursive if it calls its invoker and
eventually results in the original call.

Compute the factorial of a given integer n
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Recursion

Designing Recursive Algorithms

General strategy: Divide and Conquer

I How can we divide the problem into smaller sub-problems?

I How does each recursive call make the problem smaller?

I How do we define the base case?

I Will we always reach the base case?
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Recursion

Recursive Methods

Attention!!

I Instructions must be clear and precise.

I Stopping conditions or base cases are required to avoid infinite
recursive calls.
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Recursion

Euclid’s Algorithm

I Finds the greatest common divisor of two non-negative
integers

I Recursive definition of gcd algorithm
I if gcd (a, b) = a (if b is 0)
I if gcd (a, b) = gcd (b, a % b) (if b != 0)

1 i n t gcd ( i n t a , i n t b ){
2 i f ( b == 0)
3 r e t u r n a ;
4 e l s e
5 r e t u r n gcd ( b , a % b ) ;
6 }
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Recursion

Euclid’s Algorithm

1 i n t gcd ( i n t a , i n t b ){
2 i n t temp ;
3 w h i l e ( b != 0){
4 temp = b ;
5 b = a % b ;
6 a = temp ;
7 }
8 r e t u r n a ;
9 }

1 i n t gcd ( i n t a , i n t b ){
2 i f ( b == 0)
3 r e t u r n a ;
4 e l s e
5 a = a%b ;
6 r e t u r n gcd ( b , a ) ;
7 }
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Recursion

Fibonacci Series

Example: Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, ...

1 i n t f i b o ( i n t n ){
2 i f ( ( n == 0) | | ( n == 1 ) ) // base c a s e s
3 r e t u r n n ;
4 r e t u r n f i b o ( n−1) + f i b o ( n−2);
5 }
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Recursion

Recursive Algorithms

The picture shows that the solu-
tion computes solutions to the sub-
problems more than once for no
reason:

7 6 5 4 3 2 1 0
1 1 2 3 5 8 13 21

→ Complexity is exponential,
O(2n)

→ How to reduce the complexity
for this problem?
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Recursion

Fibonacci Series

I Reserve a string using Linked Lists and recursion.

I Find the less bill for a given amount of money.
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Recursion

Recursive Methods

Tracing a recursive method:

I As always, go line by line

I Recursive methods may have many copies

I Every method call creates a new copy and transfers flow of
control to the new copy

I Each copy has its own:
I code
I parameters
I local variables
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Recursion

Recursive Methods

Tracing a recursive method after completing a recursive call:

I Control goes back to the calling environment.

I Recursive call must execute completely before control goes
back to previous call.

I Execution in previous call begins from point immediately
following recursive call.
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Recursion

Recursive Types

I Tail recursion: a recursive method makes its recursive call as
its last step.

I e.g. recursive Greatest Common Divisor (GCD)
I can be easily converted to non-recursive methods

I Binary recursion: there are two recursive calls for each
non-base case

I e.g. Fibonacci numbers

I Multiple recursion: makes potentially many recursive calls
(more than one).

I e.g: Fibonacci numbers, merge sort, etc.
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Recursion

Recursive Types

1 // f i n d max w i t h m u l t i p l e r e c u r s i v e c a l l s
2 i n t max ( i n t a r r [ ] , i n t f i r s t , i n t l a s t ){
3 i f ( f i r s t==l a s t )
4 r e t u r n a r r [ f i r s t ] ;
5 i n t mid= f i r s t +( l a s t− f i r s t ) / 2 ;
6 i n t a=max ( a r r , f i r s t , mid ) ;
7 i n t b=max ( a r r , mid+1, l a s t ) ;
8 i f ( a<b )
9 r e t u r n b ;

10 r e t u r n a ;
11 }
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Recursion

Hanoi Tower

The mission is to move all the disks to some another tower without
violating the sequence of arrangement and with few rules as following:

I Only one disk can be moved among the towers at any given time.

I Only the top disk can be removed.

I No large disk can be put over a small disk.
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Recursion

Hanoi Tower

A solution for Hanoi Tower movements.
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Recursion

Hanoi Tower

Problem

Move all n (n ≥ 2) disks from the source tower S to the
destination tower D using a third tower T as a temporary one.

Algorithm

I n = 1, move #1 disk from S to D
I n ≥ 2, suppose that we have had n − 1 disks from S to T

I #n disk is moved from S to D
I move n − 1 disks from T to D (now we consider T as the

source tower and S as the temporary tower)

I Repeat these steps until all the disks are moved to D.
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Recursion

Hanoi Tower

1 #i n c l u d e <c s t d l i b>
2 #i n c l u d e <i o s t r eam>
3 #i n c l u d e <con i o . h>
4 u s i n g namespace s td ;
5 vo i d move ( i n t n , cha r S , cha r D, cha r T){
6 i f ( n == 1)
7 cout << ”Move #”<< n <<” from ” << S <<” to ” << D << end l ;
8 e l s e{
9 move (n−1, S , T, D) ;

10 cout << ”Move #”<< n <<” from ” << S <<” to ” << D << end l ;
11 move (n−1, T, D, S ) ;
12 }
13 }
14 i n t main (){
15 i n t n ;
16 cout<<” Ente r the number o f d i s k s : ” ;
17 c in>>n ;
18 move (n , ’A ’ , ’B ’ , ’C ’ ) ;
19 getch ( ) ;
20 }
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Recursion

Hanoi Tower

Movement solution for 3 disks
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Recursion

Tree Searching Algorithms

Recursive search in a tree

I start searching on the root then descend to the lower level,

I consider the left and right subtrees as new trees,

I continue the searching for these trees.

Doan Nhat Quang Recursion 32 / 38



Recursion

Searching and Sorting Algorithms

We will see several searching and sorting algorithms using recursion
in Chapter 5 - Searching and Sorting
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Recursion

Recursion vs Iteration

Roughly speaking, recursion and iteration perform the same kinds
of tasks:

I solve a complicated task one piece at a time, and combine the
results

I Emphasis of iteration: keep repeating all neccesary steps using
results from previous steps until all tasks are done.

I Emphasis of recursion: solve a large problem by breaking it up
into smaller and smaller pieces until you can solve it; combine
the results.
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Recursion

Recursion vs Iteration

Mathematicians often prefer recursive approach:

I solutions often shorter, closer in spirit to abstract
mathematical entity.

I recursive solutions may be more difficult to design and test

Programmers often prefer iterative approach:

I somehow, it seems more appealing to many.

I controlling loops seems simple and easy.

Doan Nhat Quang Recursion 35 / 38
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Recursion

Which one is better ? Recursion vs Iteration

I No clear answer, but there are known trade-offs
I Recursive isnt always better, e.g. for the fibonacci problem:

I recursive algorithm has a complexity of O(2n)
I iterative algorithm costs only O(n)
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Recursion

Conclusion

Why recursion?

I Recursion leads to elegant solutions: less code, less need for
local variables, etc

I If we can define a function mathematically, the solution is
easy to implement.
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Recursion

Conclusion

However

I Once implemented, it is often very difficult to debug a
recursive program.

I When reading recursive code, it is sometimes hard to really
see how it solves the problem.

I Recursive functions are useful for many cases but we should
be careful of using recursion

I Memory complexity: many function calls, and variable creation
I Time complexity: many computations.
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