
Trees

Doan Nhat Quang

doan-nhat.quang@usth.edu.vn
University of Science and Technology of Hanoi

ICT department

Doan Nhat Quang Trees 1 / 45

Today Objectives

▶ Introduce the principles of data structure: Tree

▶ Study well-known problems then implement examples in
C/C++.

Doan Nhat Quang Trees 2 / 45

Tree

So far we have seen linear structures

▶ lists, arrays, stacks, queues

Today, we study non-linear structure: Trees

▶ probably the most fundamental structure in computing

▶ hierarchical structure

Doan Nhat Quang Trees 3 / 45

Tree

Doan Nhat Quang Trees 4 / 45

Tree

Doan Nhat Quang Trees 5 / 45

Definition

Definition

A tree T is a set of nodes storing elements such that the nodes
have a parent-child relationship:

▶ if T is not empty, T has a special tree node called the root r
that has no parent.

▶ each node c of T different than the root has a unique parent
node p; each node with parent p is a child of c

Recusive Definition

A tree T is:

▶ T is empty

▶ T consists of a node r (the root) and a possibly empty set of
trees whose roots are the children of r (or called subtrees)

Doan Nhat Quang Trees 6 / 45

Tree

Doan Nhat Quang Trees 7 / 45

Terminology

Root

▶ The root of a tree is the
starting node, the node that
does not have a parent.

▶ A tree has one unique and only
one root.

▶ The root is the node F.

Doan Nhat Quang Trees 8 / 45

Terminology

Internal Node

▶ Internal nodes (parent nodes)
are the nodes that have
children.

▶ F, B, G, D, I are the internal
nodes.

▶ F has two child nodes B and G
or B and G have the parent
node F

Doan Nhat Quang Trees 9 / 45

Terminology

Terminal Node

▶ Terminal nodes (called leaves)
are the nodes that don’t have
any child node.

▶ A, D, E, H are the terminal
nodes.

Doan Nhat Quang Trees 10 / 45

Terminology

Siblings

▶ Siblings nodes are the nodes
that have the same parent node.

▶ B and G are siblings because
their common parent is F; D
and E are siblings. because
their common parent is C.

Doan Nhat Quang Trees 11 / 45

Terminology

Subtree

▶ An internal node or a terminal
node may be considered as the
root of a subtree.

▶ B and G are the root of two
subtree of the tree whose the
root is F.

Doan Nhat Quang Trees 12 / 45

Application

Application

Tree ADT are widely used:

▶ Searching problems: Binary Search Tree.

▶ Presentation of complex data: tree data.

▶ Data Mining problems: declare variables for hierarchical
methods Decision Tree, AntTree, etc.

Doan Nhat Quang Trees 13 / 45

Tree ADT

Tree ADT can be as following:

▶ init(): initialize an empty tree

▶ isRoot(): verify whether a node is the tree root

▶ isLeaf(): verify whether a node is terminal

▶ isEmpty(): verify whether a tree is empty

▶ getParent(): return the parent node of a node or null if this
node is the root

▶ getChildren(): return the child nodes of a node or null if this
node does not have any child

Doan Nhat Quang Trees 14 / 45

Tree ADT

Application

Tree ADT can be as following:

▶ search(): find the node within the tree structure

▶ display(): show tree nodes’ information

▶ insert(): add a node to the tree

▶ remove(): remove a node from the tree

Doan Nhat Quang Trees 15 / 45

Tree ADT

1 t yp ed e f s t r u c t TreeNode{
2 i n t v a l ;
3 s t r u c t TreeNode * f i r s t C h i l d ;
4 s t r u c t Treenode * n e x t S i b l i n g s ;
5 } *Tree ;

Doan Nhat Quang Trees 16 / 45

Binary Tree

Definition

A binary tree is a tree such that every node has at most 2 children
denoted a left node or a right node

Recursive Definition

A binary tree T either is an empty tree or consists of:

▶ the root stores an element

▶ two binary trees: left subtree of T and right subtree of T

Doan Nhat Quang Trees 17 / 45

Binary Tree

Definition

A binary tree is a tree such that every node has at most 2 children
denoted a left node or a right node

Recursive Definition

A binary tree T either is an empty tree or consists of:

▶ the root stores an element

▶ two binary trees: left subtree of T and right subtree of T

Doan Nhat Quang Trees 17 / 45

Binary Tree

Binary Tree can be used to represent arithmetic expression

▶ internal nodes: operators

▶ leaf nodes: operands

Example: 2× (10− 1) + 81− 12/6

Doan Nhat Quang Trees 18 / 45

Binary Tree

Binary Tree can be used to represent arithmetic expression

▶ internal nodes: operators

▶ leaf nodes: operands

Example: 2× (10− 1) + 81− 12/6

Doan Nhat Quang Trees 19 / 45

Binary Tree

Decision Tree is a kind of binary tree

▶ internal nodes: boolean test

▶ leaf nodes: decision

Doan Nhat Quang Trees 20 / 45

Binary Tree

Tree ADT can be as following:

▶ init(): initialize an empty tree

▶ isRoot(): verify whether a node is the tree root

▶ isLeaf(): verify whether a node is terminal

▶ isEmpty(): verify whether a tree is empty

▶ getParent(): return the parent node of a node or null if this
node is the root

▶ getLeft(), getRight(): return the left or right child node of a
node or null if otherwise

Doan Nhat Quang Trees 21 / 45

Binary Tree

1 t yp ed e f s t r u c t TreeNode{
2 i n t v a l ;
3 s t r u c t TreeNode * pa r en t ;
4 s t r u c t TreeNode * t L e f t ;
5 s t r u c t TreeNode * tR i gh t ;
6 } *Tree ;

Write the function init() to initilize an empty tree

Doan Nhat Quang Trees 22 / 45

Binary Tree

1 t yp ed e f s t r u c t TreeNode{
2 i n t v a l ;
3 s t r u c t TreeNode * pa r en t ;
4 s t r u c t TreeNode * t L e f t ;
5 s t r u c t TreeNode * tR i gh t ;
6 } TreeNode ;

Application

Tree ADT can be as following:

▶ insert() (insertLeft(), insertRight()): add a node to the tree

▶ remove(): remove a node from the tree if it does not have any
child node

▶ display(): show tree nodes’ information

Doan Nhat Quang Trees 23 / 45

Binary Tree

1 TreeNode* i n i t (TreeNode * t r e e , i n t v a l){
2 // i n i t i a l i z e a t r e e node wi th a s p e c i f i c v a l u e
3 t r e e = (TreeNode *) ma l l o c (s i z e o f (TreeNode)) ;
4 t r e e=>v a l = v a l ;
5 t r e e=>t L e f t = NULL ;
6 t r e e=>tR i gh t = NULL ;
7 r e t u r n t r e e ;
8 }

Doan Nhat Quang Trees 24 / 45

Binary Search Tree

Definition

A binary search tree is a binary tree with a special property:

▶ every node value is larger than all values in its left subtree

▶ every node value is smaller than all values in its right subtree

Doan Nhat Quang Trees 25 / 45

Binary Search Tree

Input array:

8 4 12 2 14 3 5 7 9 10

Binary Search Tree

Doan Nhat Quang Trees 26 / 45

Binary Search Tree

Input array:

8 4 12 2 14 3 5 7 9 10

Binary Search Tree

Doan Nhat Quang Trees 26 / 45

Binary Search Tree

Input array:

8 4 12 2 14 3 5 7 9 10

Binary Search Tree

Doan Nhat Quang Trees 26 / 45

Binary Search Tree

Input array:

8 4 12 2 14 3 5 7 9 10

Binary Search Tree

Doan Nhat Quang Trees 26 / 45

Binary Search Tree

Searching

▶ Binary Tree is like unsorted array, this structure is not good
enough for indexing or searching. However, due to the Binary
Search Tree rules, BST allows to search quickly (Binary
Search).

▶ To search a given key in Bianry Search Tree, we first compare
it with root, if the key is present at root, we return root.
▶ If key is greater than root’s key, we recur for right subtree of

root node.
▶ Otherwise we recur for left subtree.

Doan Nhat Quang Trees 27 / 45

Binary Search Tree

Tree traversal refers to the process of visiting (checking and/or
updating) each node in a tree data structure, exactly once. Such
traversals are classified by the order in which the nodes are visited.

We may do these things in any order and still have a legitimate
traversal. If we do (L) before (R), we call it left-to-right traversal,
otherwise we call it right-to-left traversal.

▶ Pre-order

▶ In-order

▶ Post-order

Doan Nhat Quang Trees 28 / 45

Binary Search Tree

Pre-order NLR (Node, Left, Right)

▶ Display the data part of the root (or current node).

▶ Traverse the left subtree by recursively.

▶ Traverse the right subtree by recursively.

▶ Display: 8 4 2 3 5 7 12 9 10 14

Doan Nhat Quang Trees 29 / 45

Binary Search Tree

Pre-order NLR (Node, Left, Right)

▶ Display the data part of the root (or current node).

▶ Traverse the left subtree by recursively.

▶ Traverse the right subtree by recursively.

▶ Display: 8 4 2 3 5 7 12 9 10 14

Doan Nhat Quang Trees 29 / 45

Binary Search Tree

Pre-order traversal (NLR):
Step 1 8 L8 R8

Step 2 4 L4 R4 R8

Step 3 2 R2 R4 R8

Step 4 3 R4 R8

Step 5 5 R5 R8

Step 6 7 R8

Step 7 12 L12 R12

Step 8 9 R9 R12

Step 9 10 R12

Step 10 14

Output 8 4 2 3 5 7 12 9 10 14

Doan Nhat Quang Trees 30 / 45

Binary Search Tree

NLR: Pre-order

1 vo i d NLR (TreeNode * t r e e) {
2 i f (t r e e == NULL)
3 r e t u r n ;
4 p r i n t f (”%d ” , t r e e=>v a l) ;
5 NLR(t r e e=>t L e f t) ;
6 NLR(t r e e=>tR i gh t) ;
7 }

Doan Nhat Quang Trees 31 / 45

Binary Search Tree

In-order LNR (Left, Node, Right)

▶ Traverse the left subtree by recursively.

▶ Display the data part of the root (or current node).

▶ Traverse the right subtree by recursively.

▶ Display:

Doan Nhat Quang Trees 32 / 45

Binary Search Tree

Post-order LRN (Left, Right, Node)

▶ Traverse the left subtree by recursively.

▶ Traverse the right subtree by recursively.

▶ Display the data part of the root (or current node).

▶ Display:

Doan Nhat Quang Trees 33 / 45

Binary Search Tree

Post-order LRN (Left, Right, Node)

▶ Traverse the left subtree by recursively.

▶ Traverse the right subtree by recursively.

▶ Display the data part of the root (or current node).

▶ Display:

Doan Nhat Quang Trees 34 / 45

Binary Search Tree

To insert a new node, we start searching from root till we find a
node which can be either a leaf node or a node having only one
child. Once a leaf node is found, the new node is added as a child
of this node.

Doan Nhat Quang Trees 35 / 45

Binary Search Tree

To insert a new node, we start searching from root till we find a
node which can be either a leaf node or a node having only one
child. Once a leaf node is found, the new node is added as a child
of this node.

Doan Nhat Quang Trees 35 / 45

Binary Search Tree

To insert a new node, we start searching from root till we find a
node which can be either a leaf node or a node having only one
child. Once a leaf node is found, the new node is added as a child
of this node.

Doan Nhat Quang Trees 35 / 45

Binary Search Tree

To insert a new node, we start searching from root till we find a
node which can be either a leaf node or a node having only one
child. Once a leaf node is found, the new node is added as a child
of this node.

Doan Nhat Quang Trees 35 / 45

Binary Search Tree

1 TreeNode* i n s e r t (TreeNode * t r e e , i n t x) {
2 i f (t r e e == NULL) {
3 t r e e = i n i t (t r e e , x) ;
4 r e t u r n t r e e ;
5 }
6 i f (x == t r e e=>v a l)
7 r e t u r n NULL ;
8 e l s e {
9 i f (x < t r e e=>v a l)

10 t r e e=>t L e f t = i n s e r t (t r e e=>t L e f t , x) ;
11 i f (x > t r e e=>v a l)
12 t r e e=>tR i gh t = i n s e r t (t r e e=>tR ight , x) ;
13 }
14 r e t u r n t r e e ;
15 }

Doan Nhat Quang Trees 36 / 45

Binary Search Tree

There are three cases for removing a node from a tree:

1 removing a leaf node.

2 removing the root.

3 removing an internal node having a child.

4 removing an internal node having two children.

Doan Nhat Quang Trees 37 / 45

Binary Search Tree

Case 1: removing a leaf node

Doan Nhat Quang Trees 38 / 45

Binary Search Tree

Case 1: removing a leaf node

Doan Nhat Quang Trees 38 / 45

Binary Search Tree

Case 2: removing the root

Replace the removed node by:

▶ the node having the minimum value of the right subtree.

▶ the node having the maximum value of the left subtree.

Doan Nhat Quang Trees 39 / 45

Binary Search Tree

Case 2: removing the root

Replace the removed node by:

▶ the node having the minimum value of the right subtree.

▶ the node having the maximum value of the left subtree.

Doan Nhat Quang Trees 39 / 45

Binary Search Tree

Case 2: removing the root

Replace the removed node by:

▶ the node having the minimum value of the right subtree.

▶ the node having the maximum value of the left subtree.

Doan Nhat Quang Trees 39 / 45

Binary Search Tree

Case 3: removing an internal node having a child.

Doan Nhat Quang Trees 40 / 45

Binary Search Tree

Case 3: removing an internal node having a child.

Doan Nhat Quang Trees 40 / 45

Binary Search Tree

Case 4: removing an internal node having two children. This case
can be considered as the second case where the node to be
removed is the root of the subtree.

Doan Nhat Quang Trees 41 / 45

Binary Search Tree

Case 4: removing an internal node having two children. This case
can be considered as the second case where the node to be
removed is the root of the subtree.

Doan Nhat Quang Trees 41 / 45

k-d Tree

A k-d tree (k-dimensional tree) is a data structure for organizing
points in a k-dimensional space. k-d trees can be considered as a
special case of binary tree.

Example on a 2-D tree

Doan Nhat Quang Trees 42 / 45

k-d Tree

▶ Each level has a “cutting
dimension”, a binary test for
this dimension (if smaller on
the left, larger on the right)

▶ Cycle through the
dimensions as walking down
the tree.

▶ Each node contains a point
(x,y)

To find (x’,y’), only compare
coordinate from the cutting
dimension

Doan Nhat Quang Trees 43 / 45

B-Tree

B-Tree: a generalization of a binary search tree

▶ all leaves are at the same level

▶ each internal node has either 2 or 3 children

▶ 2 children, it has 1 key (a test); 3 children, it has 2 key

Doan Nhat Quang Trees 44 / 45

2,3-Tree

Searching with 2,3-Tree

Doan Nhat Quang Trees 45 / 45

2,3-Tree

Searching with 2,3-Tree

Doan Nhat Quang Trees 45 / 45

2,3-Tree

Searching with 2,3-Tree

Doan Nhat Quang Trees 45 / 45

