Doan Nhat Quang

Graphs

Doan Nhat Quang

doan-nhat.quang@usth.edu.vn
University of Science and Technology of Hanoi
ICT department

Graphs

Today Objectives

» Introduce Graph data structure

» Study well-known problems then implement examples in
C/CH+.

Doan Nhat Quang Graphs 2/ 42

So far we have seen linear structures
> lists, vectors, arrays, stacks, queues

Previously, Trees are already introduced. Today, we study
non-linear structure: Graphs

> probably the most fundamental structure in computing

» hierarchical structure

Doan Nhat Quang Graphs 3/ 4

6 14
5 12
10
4
3 M Series 1 8
Series 2 6
2 Series 3 4
L 2
0 0 T
Category1l Category2 Category3 Category4 Category 1 Category 2 Category 3 Category4

We don't study these kinds of graphs.

Doan Nhat Quang Graphs

Series 3
—=Series 2

—Series 1

Graphs

AP THE F361
AN DUONG

&ng Bai hoe
cva cong Chua Trén Qude & g %5
PHUC XA
THUY KHUE
NGHTA D
KHU TAP hu Van An
HE 7.2 HA Elementary School 2 ‘
VINH PHUC]
B caLongBien

toc
lam
THANH
i LIEU GIA
Hoang thanh c
Ché ca Ha Thanh 3 natong HANG BUOM
0 HANG DAO
> A DONG HANG BAC
& Lotte Center Hanol e HANG GAI
en Ngoc San 4. 2

San van dong Hang By

oAT LINM
o San Lake
St Horel Nofia Tran Acsoem \
and Halr Selon oy
Trudng Pai 3
" HocNock) 4 $ 0.4 1 “
e]
thuong Pz ;
. & van cugone
e THANH CONG 2
: agnh vt
RS : wong Quar
5
LHO QUAN NGO THI NHAM
TRUNG PN
3 NAM 0DNG
Trung Dai N 2 %
hocLeotong » " 7 G, s % o\ 7rlRe PHUONG LIEN KEC\Vigt Nam
g v o by Vincom Ba Triéu = Cho Tréi
RUNG HOA Ngan Hang

Shortest path problems

Graphs

Doan Nhat Quan

IR N =GRV

Doan Nhat Quang Graphs 6/ 4

Definition
A graph G is a representation of a set of objects V and of edges E
(G =(V,E))
» V is a set of nodes (objects) called vertices (vertex in
singular).
» E={(u,v)},u,v € Vis a collection of edges, pairs of
vertices.)
10
: ® ©
O 6.0 ONO. 1N 7N
@ 9 @ 5 ®
O—) Q 9
NP N
ORI
Graphs 7/ 42

Doan Nhat Quang

Applications

» Transportation Networks

» Bus networks: Bus stations (vertices) and roads (edges)
» Flight networks: Airports (vertices) and directions (edges)

Sapporo

Beiing |

Kunming

‘Hol
Luang prabang O/Ha

Vientiane| ¢
Bangkok

Siemriep |

Pnompenfi-*

_® Manila

¥ HoChiminh city

Kuala Lumpur

Singaporg
Jakarta |

Doan Nhat Quang Graphs 8/ 4

Applications

» Computer Networks, Internet: Computers and capables

» Social Networks: Users and relationships

» Electronic Circuits: Components and lines

V_in
O

SCR

i

Doan Nhat Quang

wDrkstacm wurkslalm
9 b

Congentrator! g
hub oy

@ Qﬂoﬂ«slsticn

warkstation|

repeater %

Graphs

9 / 42

Graph Types

» Undirected and directed graphs
» Undirected graphs: the pairs of vertices are unordered or
bidirectional.
» Direct graphs: the edges have a direction associated with
them. A pair of vertices (u, v) is ordered where u is the source
and v is the destination.

Undirected Directed

Doan Nhat Quang Graphs 10 / 4

Graph Types

Unweighted and weighted graphs

» A weight is a numerical value, assigned as a label to a vertex
or edge of a graph. A weighted graph is a graph whose
vertices or edges have been assigned weights;

» A unweighted graph does not have any weight.

oo 0.0

Doan Nhat Quang Graphs 11 / 42

Graphs

Adjacency matrix

An adjacency matrix is a square matrix used to represent a finite
graph. The elements of the matrix indicate whether pairs of
vertices are adjacent or not in the graph.

[aj if(u,v)eE
A—{o if(u.v) ¢ E

ajj = 1 if the graph is unweighted

Doan Nhat Quang Graphs 12 / 42

%)

<
o
@©
-

O

1 2 3 45 6
01 0010

J

101 010
01 01000
0 01 011
110100

0 001 0O

1
2
3
4
5
6

A=

13 / 42

Graphs

Doan Nhat Quang

Béc Ninh

Vi V2 vz v
vi/ 0 31 103 90
vw| 31 0 9 0
vs| 103 95 0 90
vy \9 0 9 O

vi = Ha Noi, v» = Bac Ninh,

v3 = Hai Phong, v4 = Nam
Nam Dinh |nh

Doan Nhat Quang Graphs 14 / 42

Graph ADT

Application

Graph ADT can be as following:

» init(): initialize an empty graph

» addVertex(v): add new vertices in a graph

» addEdge(u,v): add a new edge between a pair of vertices
» isEmpty(): verify whether a graph is empty

» isLinked(u,v): return true if there is an edge between this pair
of vertices; otherwise return false.

» remove(v): remove a vertex from a graph

» search(u,v): search a path from a source vertex to the
destination vertex

Doan Nhat Quang Graphs 15 / 4

Graph ADT

Common different approaches to implement a Graph ADT

» Static array: arrays can be simply used to manipulate
collections of elements.

» Dynamic array: using malloc() is capable of representing a
list to avoid the fixed-size list

> Linked list: A very flexible mechanism for dynamic memory
management is provided by pointers.

Doan Nhat Quang Graphs 16 / 4

Graph ADT

Static Array-based Graph may be used to build the adjacency
matrix. However, there is a limit in graph sizes.

1 const int N= 100;
int G[N][N];

Doan Nhat Quang Graphs 17 / 42

Graph ADT

Linked List Graph can be implemented as following

struct Node{
int vertex;
Node * next;

const int N = 100;

1
2
3
4 };
5
6 typedef Node % Graph[N];

Doan Nhat Quang Graphs 18 / 4

Graph ADT

EE S ER E S CaD
010010y L O O-FO-FH
ilo1 0100 - [-F T
410 0 1 0 1 1

elooo10o0) [[T

Doan Nhat Quang Graphs 19 / 42

Graph Traversal

Graph traversal (also known as graph search) refers to the process
of visiting each vertex in a graph. Such traversals are classified by
the order in which the vertices are visited. Tree traversal is a
special case of graph traversal.
» Searching algorithms: BFS (Breadth-First Search), DFS
(Depth First Search), etc.

» Shortest Path: Minimum Spanning Tree, Greedy Algorithms.

Doan Nhat Quang Graphs 20 / 4

Breadth First Search

© From a vertex v € G, find all the adjacent vertices u with v
and v is not yet visited.
@ Visit all these vertices u and find all their adjacent vertices. .

© This process repeats until all the vertices of G are visited.

Doan Nhat Quang Graphs 21 / 42

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42

Breadth First Search

Algorithm 1 Breadth First Search

Input: v is not yet visited

1:

==
N o

N LN

Initialize an empty queue
Q.enqueue(v)
change v to visited
while Q.empty()=false do
w < Q.dequeue()
if w is not visited then
for Yu are the adjacent vertices of w do
change u to visited
Q.enqueue(u)
end for
end if

: end while

Doan Nhat Quang Graphs

23 / 42

Breadth First Search

1 void BFS(int v){

2 list <int> queue;

3 queue . push_back(v);

4 visited [v] = 1;

5 while (!queue.empty()){

6 int w= queue.front ();
7 queue. pop_front ();

8 for(int j=0;j<N;j++)

9 if (Ivisited[j] && G[w][j]==1){
10 visited [j] = 1;

11 queue . push_back(j);

12)

13 }

14)

Doan Nhat Quang Graphs 24 / 4

Depth First Search

@ From a vertex v € G, visit an adjacent vertex u of v and u is not
visited.

@ This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

@ Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 4

Depth First Search

@ From a vertex v € G, visit an adjacent vertex u of v and u is not
visited.

@ This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

@ Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 4

Depth First Search

@ From a vertex v € G, visit an adjacent vertex u of v and u is not
visited.

@ This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

@ Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 4

Depth First Search

@ From a vertex v € G, visit an adjacent vertex u of v and u is not
visited.

@ This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

@ Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 4

Depth First Search

@ From a vertex v € G, visit an adjacent vertex u of v and u is not
visited.

@ This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

@ Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 4

Depth First Search

@ From a vertex v € G, visit an adjacent vertex u of v and u is not
visited.

@ This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

@ Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 4

Depth First Search

@ From a vertex v € G, visit an adjacent vertex u of v and u is not
visited.

@ This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

@ Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 4

Depth First Search

Input: A vertex v is not visited
1: for Yu are adjacent vertices of v do

2: if u is not visited then
3 change u to visited
4: DFS(U)

5. end if

6: end for

Doan Nhat Quang Graphs 26 / 42

Depth First Search

Code C/C++

1 void DFS(int i){

2 int j;

3 printf("\n%d" ,i+1);

4 visited [i]=1;

5 for(j=0;j<n; j++)

6 if (Mvisited [j]&&G[i][j]==1)
7 DFS(j);

8 }

Doan Nhat Quang

Graphs

27 / 42

Shortest Path Algorithms

Find shortest paths in graphs

» Unweighted graph: BFS or DFS can be applied
> Weighted graph:
» find a shortest path from a source to all other vertices:
single-source shortest path
» find a shortest path between pairs of vertices: all-pairs shortest
path

Doan Nhat Quang Graphs 28 / 42

Dijkstra’'s Algorithm

Dijkstra’s Algorithm is a single-source
shortest path approach:

> put the starting vertex (or the
source) into S.

» find the vertext s which has the
total distance to all vertices from
S (the total distance is

1 4 "J1
accumulated from the source), -\
then put s into S. o*'g'-o

> This process repeats untill all the
vertices are found in S.

Doan Nhat Quang Graphs 29 / 42

Dijkstra’'s Algorithm

S = {0}

D[l] = Wp1 = X
D[2] = Wp2 = 9
D[3] = wp3 =2
D[4] = wos =5

(-}
N\
o :
/©
v v vV

-
~

—
v

v

Doan Nhat Quang Graphs 30 / 42

Dijkstra’'s Algorithm

5=1{0,3}

D[1] = min(co, D[3]) = 3
D[2] = min(9, D[3]+0oc0) =9
D[3] = 2

D[4] = min(5, D[3]+0c0) =5

©
v

O -
e |
e
v o

-
IS

-
v

Doan Nhat Quang Graphs 31/ 42

Dijkstra’'s Algorithm

5$=1{0,3,1}

D[1] = 3

D[2] = min(9,D[1] +4) =7
D[3] = 2

D[4] = min(5, D[1] + o) =5

3,
/©
v v

v

-

I
-
v

v

Doan Nhat Quang Graphs 32 / 42

Dijkstra’'s Algorithm

Doan Nhat Quang

» $={0,3,1,4}
» D[2] = min(7,D[4] +1) =6

>

Graphs

33 / 42

Dijkstra’'s Algorithm

0,
O 5 O » $=1{0,3,1,4,2}

This is the shortest path in this graph
/1 given by the Dijkstra’s Algorithm

e

Doan Nhat Quang Graphs 34 / 42

Dijkstra’'s Algorithm

Require: A vertex u e V
1: create vextex set Q
2: while Q is not empty do
3: remove u from @
for all neighbor v of u do
alt < D[u] + w(v, u)
if alt < D[v] then
Dlv] < alt
prev[v] < u
end if
10: end for
11: end while

© ® NS TR

Doan Nhat Quang Graphs 35 / 42

Prim’s Algorithm

/ \ / JS VS (hedeia)
> dmin=d(a,b) =4
\ / \ / —+S5S=SUb

Doan Nhat Quang Graphs 36 / 42

Prim’s Algorithm

O ——0@© » S={a,b}
V & / \ » V\S={cd,ef, g}
@ 9 G (® > dmin =d(b,d) =d(a,c) =
LN \i / 8
o———@ — S =5Ud (hoc)

Doan Nhat Quang Graphs 37 / 42

Prim’s Algorithm

O——© » S={a,b,d}
e% &9/ 5\@ > V\Saz{c,e,f,g}
> dmin=4d(d,c) =2
§\©ﬁ K@” —+S5=5Uc

Doan Nhat Quang Graphs 38 / 42

Prim’s Algorithm

» S={a,b,d,c}
/ \ / \ >\S/\532b{ed,fc,g}

> doin = d(c, f) = 1
S / S A

Doan Nhat Quang Graphs 39 / 42

Prim’s Algorithm

/\/\:%ﬂf
min:d(f7):2
" / \< s s sue

Doan Nhat Quang Graphs 40 / 42

Prim’s Algorithm

/ \ 5 g sviseia
> dmin=d(f,e) =5
\8\ / \{ / —S5=S5Ue

Doan Nhat Quang Graphs 41 / 42

Prim’s Algorithm

» S={a,b,d,c,f,g,e}

/ \ / \ > Es={’(a:b):(,b77d),(dvc)

(e, 1), (f,8), (g, e)}

}\ / \< / » MST (Minimum Spanning

Tree) = (S, Es)

Doan Nhat Quang Graphs 42 / 42

