
Graphs

Doan Nhat Quang

doan-nhat.quang@usth.edu.vn
University of Science and Technology of Hanoi

ICT department

Doan Nhat Quang Graphs 1 / 42



Today Objectives

I Introduce Graph data structure

I Study well-known problems then implement examples in
C/C++.

Doan Nhat Quang Graphs 2 / 42



Graphs

So far we have seen linear structures

I lists, vectors, arrays, stacks, queues

Previously, Trees are already introduced. Today, we study
non-linear structure: Graphs

I probably the most fundamental structure in computing

I hierarchical structure

Doan Nhat Quang Graphs 3 / 42



Graphs

We don’t study these kinds of graphs.

Doan Nhat Quang Graphs 4 / 42



Graphs

Shortest path problems

Doan Nhat Quang Graphs 5 / 42



Graphs

Doan Nhat Quang Graphs 6 / 42



Definition

Definition

A graph G is a representation of a set of objects V and of edges E
(G = (V ,E ))

I V is a set of nodes (objects) called vertices (vertex in
singular).

I E = {(u, v)}, u, v ∈ V is a collection of edges, pairs of
vertices.

Doan Nhat Quang Graphs 7 / 42



Applications

I Transportation Networks
I Bus networks: Bus stations (vertices) and roads (edges)
I Flight networks: Airports (vertices) and directions (edges)

Doan Nhat Quang Graphs 8 / 42



Applications

I Computer Networks, Internet: Computers and capables

I Social Networks: Users and relationships

I Electronic Circuits: Components and lines

Doan Nhat Quang Graphs 9 / 42



Graph Types

I Undirected and directed graphs
I Undirected graphs: the pairs of vertices are unordered or

bidirectional.
I Direct graphs: the edges have a direction associated with

them. A pair of vertices (u, v) is ordered where u is the source
and v is the destination.

Doan Nhat Quang Graphs 10 / 42



Graph Types

Unweighted and weighted graphs

I A weight is a numerical value, assigned as a label to a vertex
or edge of a graph. A weighted graph is a graph whose
vertices or edges have been assigned weights;

I A unweighted graph does not have any weight.

Doan Nhat Quang Graphs 11 / 42



Graphs

Adjacency matrix

An adjacency matrix is a square matrix used to represent a finite
graph. The elements of the matrix indicate whether pairs of
vertices are adjacent or not in the graph.

A =

{
aij if(u, v) ∈ E
0 if(u, v) /∈ E

aij = 1 if the graph is unweighted

Doan Nhat Quang Graphs 12 / 42



Graphs

A =



1 2 3 4 5 6

1 0 1 0 0 1 0
2 1 0 1 0 1 0
3 0 1 0 1 0 0
4 0 0 1 0 1 1
5 1 1 0 1 0 0
6 0 0 0 1 0 0



Doan Nhat Quang Graphs 13 / 42



Graphs

A =


v1 v2 v3 v4

v1 0 31 103 90
v2 31 0 95 0
v3 103 95 0 90
v4 90 0 90 0


v1 = Ha Noi, v2 = Bac Ninh,
v3 = Hai Phong, v4 = Nam
inh.

Doan Nhat Quang Graphs 14 / 42



Graph ADT

Application

Graph ADT can be as following:

I init(): initialize an empty graph

I addVertex(v): add new vertices in a graph

I addEdge(u,v): add a new edge between a pair of vertices

I isEmpty(): verify whether a graph is empty

I isLinked(u,v): return true if there is an edge between this pair
of vertices; otherwise return false.

I remove(v): remove a vertex from a graph

I search(u,v): search a path from a source vertex to the
destination vertex

Doan Nhat Quang Graphs 15 / 42



Graph ADT

Common different approaches to implement a Graph ADT

I Static array: arrays can be simply used to manipulate
collections of elements.

I Dynamic array: using malloc() is capable of representing a
list to avoid the fixed-size list

I Linked list: A very flexible mechanism for dynamic memory
management is provided by pointers.

Doan Nhat Quang Graphs 16 / 42



Graph ADT

Static Array-based Graph may be used to build the adjacency
matrix. However, there is a limit in graph sizes.

1 c o n s t i n t N = 1 0 0 ;
2 i n t G [N ] [ N ] ;

Doan Nhat Quang Graphs 17 / 42



Graph ADT

Linked List Graph can be implemented as following

1 s t r u c t Node{
2 i n t v e r t e x ;
3 Node ∗ n e x t ;
4 } ;
5 c o n s t i n t N = 1 0 0 ;
6 t y p e d e f Node ∗ Graph [N ] ;

Doan Nhat Quang Graphs 18 / 42



Graph ADT



1 2 3 4 5 6

1 0 1 0 0 1 0
2 1 0 1 0 1 0
3 0 1 0 1 0 0
4 0 0 1 0 1 1
5 1 1 0 1 0 0
6 0 0 0 1 0 0



Doan Nhat Quang Graphs 19 / 42



Graph Traversal

Graph traversal (also known as graph search) refers to the process
of visiting each vertex in a graph. Such traversals are classified by
the order in which the vertices are visited. Tree traversal is a
special case of graph traversal.

I Searching algorithms: BFS (Breadth-First Search), DFS
(Depth First Search), etc.

I Shortest Path: Minimum Spanning Tree, Greedy Algorithms.

Doan Nhat Quang Graphs 20 / 42



Breadth First Search

1 From a vertex v ∈ G , find all the adjacent vertices u with v
and u is not yet visited.

2 Visit all these vertices u and find all their adjacent vertices. .

3 This process repeats until all the vertices of G are visited.

Doan Nhat Quang Graphs 21 / 42



Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42



Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42



Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42



Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42



Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42



Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42



Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42



Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42



Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42



Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42



Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42



Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 22 / 42



Breadth First Search

Algorithm 1 Breadth First Search
Input: v is not yet visited
1: Initialize an empty queue
2: Q.enqueue(v)
3: change v to visited
4: while Q.empty()=false do
5: w ← Q.dequeue()
6: if w is not visited then
7: for ∀u are the adjacent vertices of w do
8: change u to visited
9: Q.enqueue(u)

10: end for
11: end if
12: end while

Doan Nhat Quang Graphs 23 / 42



Breadth First Search

1 v o i d BFS( i n t v ){
2 l i s t <i n t > queue ;
3 queue . push back ( v ) ;
4 v i s i t e d [ v ] = 1 ;
5 w h i l e ( ! queue . empty ( ) ){
6 i n t w = queue . f r o n t ( ) ;
7 queue . p o p f r o n t ( ) ;
8 f o r ( i n t j =0; j<N; j ++)
9 i f ( ! v i s i t e d [ j ] && G [w ] [ j ]==1){

10 v i s i t e d [ j ] = 1 ;
11 queue . push back ( j ) ;
12 }
13 }
14 }

Doan Nhat Quang Graphs 24 / 42



Depth First Search

1 From a vertex v ∈ G , visit an adjacent vertex u of v and u is not
visited.

2 This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

3 Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 42



Depth First Search

1 From a vertex v ∈ G , visit an adjacent vertex u of v and u is not
visited.

2 This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

3 Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 42



Depth First Search

1 From a vertex v ∈ G , visit an adjacent vertex u of v and u is not
visited.

2 This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

3 Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 42



Depth First Search

1 From a vertex v ∈ G , visit an adjacent vertex u of v and u is not
visited.

2 This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

3 Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 42



Depth First Search

1 From a vertex v ∈ G , visit an adjacent vertex u of v and u is not
visited.

2 This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

3 Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 42



Depth First Search

1 From a vertex v ∈ G , visit an adjacent vertex u of v and u is not
visited.

2 This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

3 Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 42



Depth First Search

1 From a vertex v ∈ G , visit an adjacent vertex u of v and u is not
visited.

2 This process repeats if there is unvisited adjacent vertex. The
process stops when all adjacent vertices are visited.

3 Find all the remain vertices of G which are not visited and repeat
the two previous steps.

Green nodes are to be visited in a queue and gray nodes are visited.

Doan Nhat Quang Graphs 25 / 42



Depth First Search

Input: A vertex v is not visited
1: for ∀u are adjacent vertices of v do
2: if u is not visited then
3: change u to visited
4: DFS(u)
5: end if
6: end for

Doan Nhat Quang Graphs 26 / 42



Depth First Search

Code C/C++

1 v o i d DFS( i n t i ){
2 i n t j ;
3 p r i n t f ( ”\n%d” , i +1);
4 v i s i t e d [ i ]=1;
5 f o r ( j =0; j<n ; j ++)
6 i f ( ! v i s i t e d [ j ]&&G [ i ] [ j ]==1)
7 DFS( j ) ;
8 }

Doan Nhat Quang Graphs 27 / 42



Shortest Path Algorithms

Find shortest paths in graphs

I Unweighted graph: BFS or DFS can be applied
I Weighted graph:

I find a shortest path from a source to all other vertices:
single-source shortest path

I find a shortest path between pairs of vertices: all-pairs shortest
path

Doan Nhat Quang Graphs 28 / 42



Dijkstra’s Algorithm

Dijkstra’s Algorithm is a single-source
shortest path approach:

I put the starting vertex (or the
source) into S .

I find the vertext s which has the
total distance to all vertices from
S (the total distance is
accumulated from the source),
then put s into S .

I This process repeats untill all the
vertices are found in S .

Doan Nhat Quang Graphs 29 / 42



Dijkstra’s Algorithm

I S = {0}
I D[1] = w01 =∞
I D[2] = w02 = 9

I D[3] = w03 = 2

I D[4] = w04 = 5

Doan Nhat Quang Graphs 30 / 42



Dijkstra’s Algorithm

I S = {0, 3}
I D[1] = min(∞,D[3]) = 3

I D[2] = min(9,D[3]+∞) = 9

I D[3] = 2

I D[4] = min(5,D[3]+∞) = 5

Doan Nhat Quang Graphs 31 / 42



Dijkstra’s Algorithm

I S = {0, 3, 1}
I D[1] = 3

I D[2] = min(9,D[1] + 4) = 7

I D[3] = 2

I D[4] = min(5,D[1] +∞) = 5

Doan Nhat Quang Graphs 32 / 42



Dijkstra’s Algorithm

I S = {0, 3, 1, 4}
I D[1] = 3

I D[2] = min(7,D[4] + 1) = 6

I D[3] = 2

I D[4] = 5

Doan Nhat Quang Graphs 33 / 42



Dijkstra’s Algorithm

I S = {0, 3, 1, 4, 2}

This is the shortest path in this graph
given by the Dijkstra’s Algorithm

Doan Nhat Quang Graphs 34 / 42



Dijkstra’s Algorithm

Require: A vertex u ∈ V
1: create vextex set Q
2: while Q is not empty do
3: remove u from Q
4: for all neighbor v of u do
5: alt ← D[u] + w(v , u)
6: if alt < D[v ] then
7: D[v ]← alt
8: prev [v ]← u
9: end if

10: end for
11: end while

Doan Nhat Quang Graphs 35 / 42



Prim’s Algorithm

I S = {a}
I V \ S = {b, c , d , e, f , g}
I dmin = d(a, b) = 4

→ S = S ∪ b

Doan Nhat Quang Graphs 36 / 42



Prim’s Algorithm

I S = {a, b}
I V \ S = {c , d , e, f , g}
I dmin = d(b, d) = d(a, c) =

8

→ S = S ∪ d (hoc c)

Doan Nhat Quang Graphs 37 / 42



Prim’s Algorithm

I S = {a, b, d}
I V \ S = {c , e, f , g}
I dmin = d(d , c) = 2

→ S = S ∪ c

Doan Nhat Quang Graphs 38 / 42



Prim’s Algorithm

I S = {a, b, d , c}
I V \ S = {e, f , g}
I dmin = d(c, f ) = 1

→ S = S ∪ f

Doan Nhat Quang Graphs 39 / 42



Prim’s Algorithm

I S = {a, b, d , c , f }
I V \ S = {e, g}
I dmin = d(f , g) = 2

→ S = S ∪ g

Doan Nhat Quang Graphs 40 / 42



Prim’s Algorithm

I S = {a, b, d , c , f , g}
I V \ S = {e}
I dmin = d(f , e) = 5

→ S = S ∪ e

Doan Nhat Quang Graphs 41 / 42



Prim’s Algorithm

I S = {a, b, d , c , f , g , e}
I ES = {(a, b), (b, d), (d , c)

, (c , f ), (f , g), (g , e)}
I MST (Minimum Spanning

Tree) = (S ,ES)

Doan Nhat Quang Graphs 42 / 42


