Graphs

Doan Nhat Quang

doan-nhat.quang@usth.edu.vn
University of Science and Technology of Hanoi
ICT department

- Introduce Graph data structure
- Study well-known problems then implement examples in C/C++.

Graphs

So far we have seen linear structures

- lists, vectors, arrays, stacks, queues

Previously, Trees are already introduced. Today, we study non-linear structure: Graphs

- probably the most fundamental structure in computing
- hierarchical structure

Graphs

We don't study these kinds of graphs.

Graphs

Shortest path problems

Graphs

Definition

Definition

A graph G is a representation of a set of objects V and of edges E $(G=(V, E))$

- V is a set of nodes (objects) called vertices (vertex in singular).
- $E=\{(u, v)\}, u, v \in V$ is a collection of edges, pairs of vertices.

Applications

- Transportation Networks
- Bus networks: Bus stations (vertices) and roads (edges)
- Flight networks: Airports (vertices) and directions (edges)

Applications

- Computer Networks, Internet: Computers and capables
- Social Networks: Users and relationships
- Electronic Circuits: Components and lines

Graph Types

- Undirected and directed graphs
- Undirected graphs: the pairs of vertices are unordered or bidirectional.
- Direct graphs: the edges have a direction associated with them. A pair of vertices (u, v) is ordered where u is the source and v is the destination.

Undirected

Directed

Graph Types

Unweighted and weighted graphs

- A weight is a numerical value, assigned as a label to a vertex or edge of a graph. A weighted graph is a graph whose vertices or edges have been assigned weights;
- A unweighted graph does not have any weight.

Graphs

Adjacency matrix

An adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph.

$$
A= \begin{cases}a_{i j} & \text { if }(u, v) \in E \\ 0 & \text { if }(u, v) \notin E\end{cases}
$$

$a_{i j}=1$ if the graph is unweighted

Graphs

$$
A=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 6
\end{aligned}\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Graphs

$A=$
v_{1}
v_{2}
v_{3}
$v_{4}$$\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 31 & 103 & 90 \\ 31 & 0 & 95 & 0 \\ 103 & 95 & 0 & 90 \\ 90 & 0 & 90 & 0\end{array}\right)$
$v_{1}=H a N o i, v_{2}=$ Bac Ninh,
$v_{3}=$ Hai Phong, $v_{4}=$ Nam inh.

Graph ADT

Application

Graph ADT can be as following:

- init(): initialize an empty graph
- addVertex(v): add new vertices in a graph
- addEdge(u,v): add a new edge between a pair of vertices
- isEmpty(): verify whether a graph is empty
- isLinked(u,v): return true if there is an edge between this pair of vertices; otherwise return false.
- remove(v): remove a vertex from a graph
- search(u,v): search a path from a source vertex to the destination vertex

Graph ADT

Common different approaches to implement a Graph ADT

- Static array: arrays can be simply used to manipulate collections of elements.
- Dynamic array: using malloc() is capable of representing a list to avoid the fixed-size list
- Linked list: A very flexible mechanism for dynamic memory management is provided by pointers.

Graph ADT

Static Array-based Graph may be used to build the adjacency matrix. However, there is a limit in graph sizes.

1 const int $N=100$;
2 int G[N][N];

Graph ADT

Linked List Graph can be implemented as following
1 struct Node\{
2 int vertex;
3 Node * next;
4 \};
5 const int $\mathrm{N}=100$;
6 typedef Node * Graph[N];

Graph ADT

Graph Traversal

Graph traversal (also known as graph search) refers to the process of visiting each vertex in a graph. Such traversals are classified by the order in which the vertices are visited. Tree traversal is a special case of graph traversal.

- Searching algorithms: BFS (Breadth-First Search), DFS (Depth First Search), etc.
- Shortest Path: Minimum Spanning Tree, Greedy Algorithms.

Breadth First Search

(1) From a vertex $v \in G$, find all the adjacent vertices u with v and u is not yet visited.
(2) Visit all these vertices u and find all their adjacent vertices. .
(3) This process repeats until all the vertices of G are visited.

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

Breadth First Search

Green nodes are to be visited in a queue and gray nodes are visited.

```
Algorithm 1 Breadth First Search
Input: \(v\) is not yet visited
    1: Initialize an empty queue
    2: Q.enqueue ( \(v\) )
    3: change \(v\) to visited
    4: while Q.empty ( \()=\) false do
    5: \(\quad w \leftarrow\) Q.dequeue()
    6: if \(w\) is not visited then
    7: \(\quad\) for \(\forall u\) are the adjacent vertices of \(w\) do
    8: \(\quad\) change \(u\) to visited
    9: \(\quad\) Q.enqueue ( \(u\) )
10: end for
11: end if
12: end while
```


Breadth First Search

```
1 void BFS(int v)\{

\section*{Depth First Search}
(1) From a vertex \(v \in G\), visit an adjacent vertex \(u\) of \(v\) and \(u\) is not visited.
(2) This process repeats if there is unvisited adjacent vertex. The process stops when all adjacent vertices are visited.
(3) Find all the remain vertices of \(G\) which are not visited and repeat the two previous steps.


Green nodes are to be visited in a queue and gray nodes are visited.

\section*{Depth First Search}
(1) From a vertex \(v \in G\), visit an adjacent vertex \(u\) of \(v\) and \(u\) is not visited.
(2) This process repeats if there is unvisited adjacent vertex. The process stops when all adjacent vertices are visited.
(3) Find all the remain vertices of \(G\) which are not visited and repeat the two previous steps.


Green nodes are to be visited in a queue and gray nodes are visited.

\section*{Depth First Search}
(1) From a vertex \(v \in G\), visit an adjacent vertex \(u\) of \(v\) and \(u\) is not visited.
(2) This process repeats if there is unvisited adjacent vertex. The process stops when all adjacent vertices are visited.
(3) Find all the remain vertices of \(G\) which are not visited and repeat the two previous steps.


Green nodes are to be visited in a queue and gray nodes are visited.

\section*{Depth First Search}
(1) From a vertex \(v \in G\), visit an adjacent vertex \(u\) of \(v\) and \(u\) is not visited.
(2) This process repeats if there is unvisited adjacent vertex. The process stops when all adjacent vertices are visited.
(3) Find all the remain vertices of \(G\) which are not visited and repeat the two previous steps.


Green nodes are to be visited in a queue and gray nodes are visited.

\section*{Depth First Search}
(1) From a vertex \(v \in G\), visit an adjacent vertex \(u\) of \(v\) and \(u\) is not visited.
(2) This process repeats if there is unvisited adjacent vertex. The process stops when all adjacent vertices are visited.
(3) Find all the remain vertices of \(G\) which are not visited and repeat the two previous steps.


Green nodes are to be visited in a queue and gray nodes are visited.

\section*{Depth First Search}
(1) From a vertex \(v \in G\), visit an adjacent vertex \(u\) of \(v\) and \(u\) is not visited.
(2) This process repeats if there is unvisited adjacent vertex. The process stops when all adjacent vertices are visited.
(3) Find all the remain vertices of \(G\) which are not visited and repeat the two previous steps.


Green nodes are to be visited in a queue and gray nodes are visited.

\section*{Depth First Search}
(1) From a vertex \(v \in G\), visit an adjacent vertex \(u\) of \(v\) and \(u\) is not visited.
(2) This process repeats if there is unvisited adjacent vertex. The process stops when all adjacent vertices are visited.
(3) Find all the remain vertices of \(G\) which are not visited and repeat the two previous steps.


Green nodes are to be visited in a queue and gray nodes are visited.

\section*{Depth First Search}

Input: A vertex \(v\) is not visited
1: for \(\forall u\) are adjacent vertices of \(v\) do
2: if \(u\) is not visited then
3: \(\quad\) change \(u\) to visited
4: DFS(u)
5: end if
6: end for

\section*{Depth First Search}

\section*{Code C/C++}
```

1 void DFS(int i){
2 int j;
printf("\n%d",i+1);
visited [i]=1;
for(j=0; j<n; j++)
if(!visited [j]\&\&G[i][j]==1)
DFS(j);

```

\section*{Shortest Path Algorithms}

Find shortest paths in graphs
- Unweighted graph: BFS or DFS can be applied
- Weighted graph:
- find a shortest path from a source to all other vertices: single-source shortest path
- find a shortest path between pairs of vertices: all-pairs shortest path

\section*{Dijkstra's Algorithm}

Dijkstra's Algorithm is a single-source shortest path approach:
- put the starting vertex (or the source) into \(S\).
- find the vertext \(s\) which has the total distance to all vertices from \(S\) (the total distance is accumulated from the source), then put \(s\) into \(S\).
- This process repeats untill all the vertices are found in \(S\).

\section*{Dijkstra's Algorithm}

- \(S=\{0\}\)
- \(D[1]=w_{01}=\infty\)
- \(D[2]=w_{02}=9\)
- \(D[3]=w_{03}=2\)
- \(D[4]=w_{04}=5\)

\section*{Dijkstra's Algorithm}

- \(S=\{0,3\}\)
- \(D[1]=\min (\infty, D[3])=3\)
- \(D[2]=\min (9, D[3]+\infty)=9\)
- \(D[3]=2\)
- \(D[4]=\min (5, D[3]+\infty)=5\)

\section*{Dijkstra's Algorithm}

- \(S=\{0,3,1\}\)
- \(D[1]=3\)
- \(D[2]=\min (9, D[1]+4)=7\)
- \(D[3]=2\)
- \(D[4]=\min (5, D[1]+\infty)=5\)

\section*{Dijkstra's Algorithm}

- \(S=\{0,3,1,4\}\)
- \(D[1]=3\)
- \(D[2]=\min (7, D[4]+1)=6\)
- \(D[3]=2\)
- \(D[4]=5\)

\section*{Dijkstra's Algorithm}

\[
\checkmark S=\{0,3,1,4,2\}
\]

This is the shortest path in this graph given by the Dijkstra's Algorithm

\section*{Dijkstra's Algorithm}

Require: A vertex \(u \in V\)
1: create vextex set \(Q\)
2: while \(Q\) is not empty do
3: remove \(u\) from \(Q\)
4: for all neighbor \(v\) of \(u\) do
5: \(\quad\) alt \(\leftarrow D[u]+w(v, u)\)
6: if alt \(<D[v]\) then
7: \(\quad D[v] \leftarrow a l t\)
8: \(\quad \operatorname{prev}[v] \leftarrow u\)
9: end if
10: end for
11: end while

\section*{Prim's Algorithm}

\[
\begin{aligned}
& \rightarrow S=\{a\} \\
& \rightarrow V \backslash S=\{b, c, d, e, f, g\} \\
& \rightarrow d_{\min }=d(a, b)=4 \\
& \rightarrow S=S \cup b
\end{aligned}
\]

\section*{Prim's Algorithm}

\[
\begin{aligned}
& S=\{a, b\} \\
\rightarrow & V \backslash S=\{c, d, e, f, g\} \\
- & d_{\min }=d(b, d)=d(a, c)= \\
& 8 \\
\rightarrow & S=S \cup d(\text { hoc } c)
\end{aligned}
\]

\section*{Prim's Algorithm}

\[
\begin{aligned}
& \rightarrow S=\{a, b, d\} \\
& \rightarrow V \backslash S=\{c, e, f, g\} \\
& \rightarrow d_{\min }=d(d, c)=2 \\
& \rightarrow S=S \cup c
\end{aligned}
\]

\section*{Prim's Algorithm}

\[
\begin{aligned}
& \rightarrow S=\{a, b, d, c\} \\
& \rightarrow V \backslash S=\{e, f, g\} \\
& \rightarrow d_{\min }=d(c, f)=1 \\
& \rightarrow S=S \cup f
\end{aligned}
\]

\section*{Prim's Algorithm}

\[
\begin{aligned}
& \rightarrow S=\{a, b, d, c, f\} \\
& \rightarrow V \backslash S=\{e, g\} \\
& \rightarrow d_{\min }=d(f, g)=2 \\
& \rightarrow S=S \cup g
\end{aligned}
\]

\section*{Prim's Algorithm}

\[
\begin{aligned}
& \rightarrow S=\{a, b, d, c, f, g\} \\
& \rightarrow V \backslash S=\{e\} \\
& \rightarrow d_{\min }=d(f, e)=5 \\
& \rightarrow S=S \cup e
\end{aligned}
\]

\section*{Prim's Algorithm}

- \(S=\{a, b, d, c, f, g, e\}\)
- \(E_{S}=\{(a, b),(b, d),(d, c)\) \(,(c, f),(f, g),(g, e)\}\)
- MST (Minimum Spanning Tree \()=\left(S, E_{S}\right)\)```

