
Class	Members

Object-Oriented	Programming

Contents

• Class	methods	vs.	instance	methods
• Class	variables	vs.	instance	variables

2

Class	Methods
• Examples:

• Methods	in	the	Math	class	don't	use	any	instance	variable	
values.	So	they	don't	need	to	know	about	a	specific	Math	
object.	All	we	need	is	the	Math	class

• Math	functions	were	written	as	classmethods,	or	static
methods

• A	class	method	(static	method)	is	one	that	runs	without	any	
instance	of	the	class

3

double x = Math.round(42.2);
int y = Math.abs(-10);

4

Instance	Methods	vs.	Class	Methods
Instance	(regular)	methods

• Behavior	of	instance	method	
greeting() is	affected	by	instance	
variable	name

• Instance	method	is	called	using	a	
reference	variable
s = cow1.greeting();

Class	(static)	methods

• Static	method	abs() cannot use	
instance	variables	of	Math	class

• Static	method	is	called	using	the	
class	name:
int a = Math.abs(-10);

class Cow {
String name;
public String greeting() {

return ("Hi, I am " + name);
}

}

class Math {
public static int abs(int a) {

if (a > 0) return a;
return -a;

}
}

5

Using	Class	Methods

• Class	(static)	methods	can’t	use:
– instance	variables
– instance	methods

6

public class Duck {

private int size;

public static void main(String[] args) {
Duck d = new Duck();
System.out.println("Size of duck is " + size);

}
}

Compile error: non-static variable “size”
can’t be referenced from a static context

Using	Class	Methods

7

Using	Class	Methods
public class Duck {

private int size;

public static void main(String[] args) {
Duck d = new Duck();
setSize(10);

}
public void setSize (int s) {
if (s>0) size = s;

}
}

Compile error: non-static method “setSize()”
can’t be referenced from a static context

8

Correct	Code

public class Duck {

private int size;

public void setSize (int s) {
if (s>0) size = s;

}

public static void main(String[] args) {
Duck d = new Duck();
d.setSize(10);
System.out.println("Size of duck is " + d.size);

}
}

The instance object d must be specified

9

Better	Code

• The	program	is	put	in	a	separate	class:
– Class	Duck	should	define	Duck	objects	only
– Different	programs	can	use	the	same	Duck	class

public class Duck {
private int size;
public void setSize (int s) {…}

...
public class DuckProgram {
public static void main(String[] args) {

Duck d = new Duck();
d.setSize(10);
System.out.println("Size of duck is " + d.size);

}
}

Class	Variables
• A	class	variable	(or	static	variable)	belongs	to	the	
class,	not	any	object

• Need	just	one	copy,	but	shared	among	all	class	
instances

10

public class Duck {

private int size;
public static int count = 0;

public Duck() {
count++;

}
...

Each duck has its own size.
But all ducks share the same
attribute “count”

11

Class	Variables	vs.	Instance	Variables

Class/static	variables
• belong	to	a	class
• need	just	one	copy,	but	shared	

among	all	instances	of		the	class
• initialized	before	any	objects	of	

the	class

Instance	variables
• belong	to	an	instance
• each	instance	has	its	own	copy
• initialized	when	the	owner	

object	is	created

public class Duck {
private int size = 0;
public static int count = 0;

public Duck() {
count++;
size++;

}

12

Using	Class	Variables

• Class	(static)	variables	can	be	used	by:
– static	methods
– instance	methods

13

Using	Class	Variables
public class Duck {

private int size;
public static int count = 0;

public void incCount()
{

count++;
}

}

Static variable count is called by
instance object d

public class DuckTestDrive {
public static void main(String [] args) {

Duck d = new Duck();
d.incCount();
System.out.println(d.count);
d.incCount();
System.out.println(Duck.count);

}
}

Static variable count is called by
class name Duck

14

