Object-Oriented Programming

Inheritance & Polymorphism

* Concept of inheritance

* Overriding

* [S-A & HAS-A relationship

* Design an inheritance structure
* Concept of polymorphism

* Object class

Important OO Concepts

encapsulation

"P.LE*
triangle
abstraction

inheritance polymorphism

What is Inheritance?

* Inheritance is a relationship where a child class inherits
members, i.e. instance variables and methods, of a parent

class:
— The child class is known as subclass or derived class
— The parent class is known as superclass or base class

superclass presents Animal

in common ,) : :
makeNoise() Inheritance relationship

subclasses inherit Cow Dog

attributes and /

methods of parent
class

What is Inheritance?

* |Ininheritance:

— The superclass is more abstract
— The subclass is more specific

Animal

superclass || name

makeNoise()

/N

Cow Dog

|

subclasses

What is Inheritance?

* |ninheritance, the subclass specializes the superclass:

— It can add new variables and methods
— It can override inherited methods

Animal

name

makeNoise()

add a new /\

instance variable \ Cow Dog
givesMilk

makeNoise() chaseCats() «— | 3dd a new method

override
the inherited method

Inheritance Declaration

* |nJava, extends keyword is used to express inheritance
relationship between two classes

e syntax:
class Parent {

class Animal {
String name;
void makeNoise() {
System.out.print ("Hmm");

}
¥

class Cow extends Animal {
boolean givesMilk;
void makeNoise() {
System.out.print("Moooo

}

¥

class Dog extends Animal {
void chaseCats() {
System.out.print("I'm coming, cat!");+~—

}

Animal

name

makeNoise()

N

Cow

Dog

givesMilk

makeNoise() chaseCats()

¥

the overriding method

and method

newly added attribute

Overriding - Which method is called?

* Which version of the methods get called?

Animal

Wolf w = new Wolf(); makeNoise()
eat()

w.makeNoise(); féz(?ﬁ(())
w.roam(); ?
w.eat(); Cahine
w.sleep(); roam()

Wolf

the lowest one wins!

makeNoise()
eat()

Rules for Overriding

* The principle: the subclass must be able to do anything the
superclass declares

* Overriding rules:
— Parameter types must be the same

* whatever the superclass takes as an argument, the subclass
overriding the method must be able to take that same
argument

— Return types must be compatible

* whatever the superclass declares as return type, the
subclass must return the same type or a subclass type

— The method can't be less accessible

* a public method cannot be overridden by a private version

Wrong Overriding

Appllance Appliance
boalean tumOn() public boolean tumOn()
boatgan wumOf() public boolean tumOn()

L
Toaster NOT L%? Sa\x Toaster
1t "°+' 3 ' oM
f"_“":'h boolean tumCn(int lavel) ov:t“‘fii;('f“:cazcw private boolean tumOn{)
This HIGT an '{:“: Nov is it 2 leap!
pHerY e En: avey L.OP}E :t::t;‘:‘
o T
IO method.
.;,.un"r"ﬁ“ﬁ et This s &i{y_gﬂ?- a Jeag!
verlLOAD, b} ot
d‘l'l:'rﬂ FI}E; L= W=

IS-A & HAS-A relationship

* Triangle I1S-A Shape * House HAS-A Kitchen

e Cow IS-An Animal e Kitchen HAS-A Sink

 Dog IS-An Animal e Kitchen HAS-A Stove

||‘ Inheritance II‘ Composition
Animal

name

makeNoise() :
House Kitchen Stove
/\ Kitchen kitchen; Stove stove: double width;
Room bedroom; Sink sink; double length;
Cow Dog int numOfCookers;
givesMilk

makeNoise() chaseCats()

IS-A & HAS-A relationship

 Composition—“HAS-A" relationship

— the new class is composed of objects of existing
classes

— reuse the functionality of the existing class, but
not its form

* Inheritance— “IS-A” relationship
— create a new class as a type of an existing class

— new class absorbs the existing class's members
and extends them with new or modified
capabilities

Protected Access Level

accessible within
Modifier same class same subclasses | universe
package
private Yes
package (default) Yes Yes
protected Yes Yes Yes
public Yes Yes Yes Yes

Protected Access Level

Protected attributes of a superclass are directly accessible

from inside its subclasses

public class Person {
protected String name;
protected String birthday;

Subclass can directly access

| superclass’s protected attributes

o

protected int salary;
public String
String s;
S = name + ",
s += ","
return s;

+ salary;

public class Employee extends/Person {
String() /{

+ birthday;

Protected Access Level

Protected methods of a superclass are directly accessible
from inside its subclasses.

public class Person {
private String name; Subclass can directly access

superclass’s protected methods

private String birthday;

protected String getName()..

public class Employeg extends WRerson {
protected int s3dlary;
public String FoString() {
String s;
s = getName() + "," + getBirthday();

s += "," + salary;
return s;

Design an Inheritance Structure

Tiger HouseCat

* Which one should be subclass/superclass?
* Or, should they both be subclasses to some other class?
 How should you design an inheritance structure?

Design an Inheritance Structure

* Case study:
* Having a number of animals of different
species: tigers, lions, wolves, dogs, hippos,
cats...

- how to design the corresponding
inheritance structure?

Design an Inheritance Structure

» Step 1: Figure out the common abstract
characteristics that all animals have

 instance variables J methods

* food * makeNoise()
* hunger * eat()
* location * sleep()

* roam()

Design an Inheritance Structure

» Step 2: Design a class that represents all
common states and behaviors

Lion

Wolf

Design an Inheritance Structure

* Step 3: Decide if a subclass needs any
behaviors that are specific to that particular

subclass P

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()

Lion \ Wolf
Hippo Tiger Dog Cat
makeNoise() makeNoise()
eat() eat()
makeNoise() | | makeNoise() makeNoise() | | makeNoise()
eat() eat() eat() eat()
chaseCats()

Design an Inheritance Structure

Animal

* Step 4: Look for more

food

inheritance levels: poundrie

makeNoise()

more common et

sleep()
. . roam()
behaviors in subclasses
Feline Canine
/roam() roam()
Lion Hippo V\
Wolf
makeNoise() makeNoise()
eat() Cat Tiger eat() Dog
makeNoise()
eat()

makeNoise() makeNoise() makeNoise()
eat() eat() eat()

chaseCats()

Types of inheritance structure

Single Inheritance public class A {
ClassA | | ...
)
T public class B extends A {
Class B }
Multi Level Inheritance R A
f publicclass A{c..ccueens: }
Class B publicclass Bextends A {................... }
’ public class C extends B{.................... }
Class C
Hierarchical Inheritance
Class A publicclass A{................... }
/\ publicclass Bextends A{................... }
Class B Class C public class C extends A{..................... }
Multiple Inheritance pUblic class A{ccovren.. }
Class A Class B
publicclass B{...........ccceune }
\/ public class C extends AB {
Class C } //Java does .r‘10t support mutiple Inheritance

Important OO Concepts

encapsulation

"P.LE*
triangle
abstraction

inheritance polymorphism

What is Polymorphism?

* Polymorphism means “exist in many forms”
* Object polymorphism : objects of subclasses can be treated as if
they are all objects of the superclass

 Example:
Animal
name
makeNoise()
Dog dog = new Dog();
Animal dog = new Dog(); /vv\
Cow Dog
givesMilk
makeNoise() chaseCats()

— A Dog object can be seen as an Animal object as well

Polymorphism Example

* Normally,
Dog dog = new Dog();

¥

¢ Wlth p0|ym0rphlsm: These two are the same type. The velevente
. vavisble type is declaved as Daﬁ. and the ab_}cd't
Animal dog = new Dog(); is eveated as new Doal).

- The referencetype can

be a superclass of Anim
the actual object type These dwo'are NOT the same ype. The

vebevente variable type is declaved as Animal,
but the object is ereated as mew __D_gg().

Polymorphism Example

* An array is declared of type Animal. It can hold
objects of Animal's subclasses

_qwe put objects of any subclasses

Animal[] animals =

for (int 1

}

new Animal[5};

animals[@] = new Dog();
animals[1] = new Cat();
animals[2] = new Wolf();
animals[3] = new Hippo()
animals[4] = new Lion();

of Animal in the Animal array

we can loop through the array and

/ call Animal-class methods

@; i < animals.length; i++) {
animals[i].makeNoise();

™~

N

the catruns Cat's version of makeNoise(),
the dog runs Dog's version,...

Polymorphic Arguments & Return Types

* Parameters of type Animal can take arguments
of any subclasses of Animal

it takes arguments of types
class Pet { Dog and Cat
public void giveVaccine(AnimaIkES/E////

a.makeNoise();

¥

}

Pet p = new Pet();
Dog d = new Dog();
Cat c = new Cat();
p.giveVaccine(d); —_

p-givevaccine(c); « the Dog's makeNoise()is invoked

the Cat's makeNoise()is invoked

class Animal {

String name;

public void makeNoise() { Polymorphism: The same message
System.out.print ("Hmm."); "makeNoise" is interpreted differently,
depending on the type of the owner

}
public void intrW object
makeNoise();

System.out.println(" I'm " + name);
h Animal petl = new Cat("Tom Cat");
}l ; . Animal pet2 = new Cow("Mini Cow");
class Cat extends Animal { petl.introduce();
e et2.introduce();
public void makeNoise() { > s

System.out.print("Meow...");
¥

} Meow... I'm Tom Cat
class Cow extends Animal {

Moo... I'm Mini Cow

public void makeNoise() f{
System.out.print("Moo...");

¥

u

Why care about polymorphism?

* With polymorphism, you can write code that
doesn't have to change when you introduce
new subclass types into the program

Animal
- name
+ makeNoise()
+ introduce()
Pig Duck Cow
+ makeNoise() + makeNoise() + makeNoise()

class Animal {
e Animal
public void makeNoise() { - name
System.out.print ("Hmm.");
} + makeNoise()
public void introduce() { * introduce()
makeNoise(); Zﬁ&
System.out.println(" I'm " + name)};, | | ..
}
} Pig Duck Cow

class Pig extends Animal { :) :
public void makeNoise() { + makeNoise() + makeNoise() + makeNoise()

System.out.print("0i oi...");

}

} class Duck extends Animal {

public void makeNoise() {
System.out.print("Quack quack...");

}

}

You can add as many new animal types as you want
without having to modify the introduce () method!

Object Class

* All classes are subclasses to the class Object

. in herited methOdS: equals() and toString()

should be overridden
* Class getClass() topworkpropeny

Object

* int hashCode()
* boolean equals()
 String toString()

equals()
getClass()
hashCode()
toString()

Car cl
Car c2

new Car();
new Car();

System.out.println(cl.equals(c2));
System.out.println(cl.getClass() + cl.hashCode());
System.out.println(cl.toString());

1

Car

speed

accelerate()
decelerate()

