
Inheritance	&	Polymorphism

Object-Oriented	Programming

Contents

• Concept	of	inheritance
• Overriding
• IS-A	&	HAS-A	relationship
• Design	an	inheritance	structure
• Concept	of	polymorphism
• Object	class

2

3

Important	OO	Concepts

abstraction

encapsulation

inheritance polymorphism

"P.I.E“
triangle

What	is	Inheritance?
• Inheritance	 is	a	relationship	where	a	child	class	inherits

members,	i.e.	instance	variables	and	methods,	of	a	parent	
class:
– The	child	class	is	known	as	subclass	or	derived	class
– The	parent	class	is	known	as	superclass	or	base	class

4

superclass presents
what subclasses have
in common

subclasses inherit
attributes and
methods of parent
class

Inheritance relationship

What	is	Inheritance?
• In	inheritance:	

– The	superclass	is	more	abstract
– The	subclass	is	more	specific

5

superclass

subclasses

What	is	Inheritance?
• In	inheritance,	the	subclass	specializes the	superclass:

– It	can	add	new	variables	and	methods
– It	can	override	inherited	methods

6

Animal
name

Dog

makeNoise()

chaseCats()

Cow
givesMilk
makeNoise()

add a new
instance variable

override
the inherited method

add a new method

Inheritance	Declaration
• In	Java,	extends keyword	is	used	to	express	inheritance	

relationship	between	two	classes
• syntax:

class	Parent	{			
.....	 	
.....

}
class	Child	extends Parent	{			

.....	 		

.....
}

7

Example

8

Animal
name

Dog

makeNoise()

chaseCats()

Cow
givesMilk
makeNoise()

class Animal {
String name;
void makeNoise() {

System.out.print("Hmm");
}

}

class Cow extends Animal {
boolean givesMilk;
void makeNoise() {

System.out.print("Moooooooo...");
}

}

class Dog extends Animal {
void chaseCats() {

System.out.print("I'm coming, cat!");
}

}

newly added attribute
and method

the overriding method

9

Overriding	- Which	method	is	called?
• Which	version	of	the	methods	get	called?

Animal

makeNoise()
eat()
sleep()
roam()

Wolf

makeNoise()
eat()

Canine

roam()

Wolf w = new Wolf();

w.makeNoise();

w.roam();

w.eat();

w.sleep();

the lowest one wins!

10

Rules	for	Overriding
• The	principle:	the	subclass	must	be	able	to	do	anything	the	

superclass	declares
• Overriding	rules:

– Parameter	types	must	be	the	same
• whatever	the	superclass	takes	as	an	argument,	 the	subclass	
overriding	the	method	must	be	able	to	take	that	same	
argument

– Return	types	must	be	compatible
• whatever	the	superclass	declares	as	return	type,	the	
subclass	must	return	the	same	type	or	a	subclass	type

– The	method	can't	be	less	accessible
• a	public	method	cannot	be	overridden	by	a	private	version

11

Wrong	Overriding

12

IS-A	&	HAS-A	relationship
• Triangle	 IS-A	Shape
• Cow	IS-An	Animal
• Dog	IS-An	Animal

Inheritance

• House	HAS-A	Kitchen
• Kitchen	HAS-A	Sink
• Kitchen	HAS-A	Stove

Composition

Animal
name

Dog

makeNoise()

chaseCats()

Cow
givesMilk
makeNoise()

House

Kitchen kitchen;
Room bedroom;

Kitchen

Stove stove;
Sink sink;

Stove
double width;
double length;
int numOfCookers;

13

IS-A	&	HAS-A	relationship
• Composition	– “HAS-A”	relationship

– the	new	class	is	composed	of	objects	of	existing	
classes	

– reuse	the	functionality	of	the	existing	class,	but	
not	its	form

• Inheritance	– “IS-A”	relationship
– create	a	new	class	as	a	type	of an	existing	class	
– new	class	absorbs	the	existing	class's	members	
and	extends	them	with	new	or	modified	
capabilities

14

ProtectedAccess	Level

Modifier
accessible within

same class same
package

subclasses universe

private Yes
package (default) Yes Yes
protected Yes Yes Yes
public Yes Yes Yes Yes

15

Protected attributes of a superclass are directly accessible
from inside its subclasses

public class Person {
protected String name;
protected String birthday;
...

}
public class Employee extends Person {

protected int salary;
public String toString() {

String s;
s = name + "," + birthday;
s += "," + salary;
return s;

}
}

Subclass can directly access
superclass‘s protected attributes

ProtectedAccess	Level

16

Protected methods of a superclass are directly accessible
from inside its subclasses.

public class Person {
private String name;
private String birthday;

protected String getName()…
}

public class Employee extends Person {
protected int salary;
public String toString() {

String s;
s = getName() + "," + getBirthday();
s += "," + salary;
return s;

}
}

ProtectedAccess	Level

Subclass can directly access
superclass‘s protected methods

17

Design	an	Inheritance	Structure
Tiger																																										HouseCat

• Which	one	should	be	subclass/superclass?
• Or,	should	they	both	be	subclasses	to	some	other class?
• How	should	you	design	an	inheritance	 structure?

18

Design	an	Inheritance	Structure

• Case	study:	
• Having	a	number	of	animals	of	different	
species:	tigers,	lions,	wolves,	dogs,	hippos,	
cats…

à how	to	design	the	corresponding	
inheritance	structure?

19

Design	an	Inheritance	Structure
• Step	1:	Figure	out	the	common abstract	
characteristics	that	all	animals	have

q instance	variables
• food
• hunger
• location

qmethods
• makeNoise()
• eat()
• sleep()
• roam()

20

Design	an	Inheritance	Structure
• Step	2:	Design	a	class	that	represents	all	
common	states	and	behaviors

Animal

picture
food
hunger
boundaries
location

Lion

makeNoise()
eat()
sleep()
roam()

Hippo Tiger Dog Cat

Wolf

21

Design	an	Inheritance	Structure
• Step	3:	Decide	if	a	subclass	needs	any	
behaviors	that	are	specific	to	that	particular	
subclass Animal

picture
food
hunger
boundaries
location

Lion

makeNoise()
eat()

makeNoise()
eat()
sleep()
roam()

Hippo

makeNoise()
eat()

Tiger

makeNoise()
eat()

Dog

makeNoise()
eat()
chaseCats()

Cat

makeNoise()
eat()

Wolf

makeNoise()
eat()

22

Design	an	Inheritance	Structure
• Step	4:	Look	for	more	
inheritance	levels:	
more	common	
behaviors	in	subclasses

Animal

picture
food
hunger
boundaries
location

Lion

makeNoise()
eat()

makeNoise()
eat()
sleep()
roam()

Hippo

makeNoise()
eat()Tiger

makeNoise()
eat()

Dog

makeNoise()
eat()
chaseCats()

Cat

makeNoise()
eat()

Wolf

makeNoise()
eat()

Feline

roam()

Canine

roam()

23

Types	of	inheritance	structure

24

Important	OO	Concepts

abstraction

encapsulation

inheritance polymorphism

"P.I.E“
triangle

What	is	Polymorphism?
• Polymorphism	means	“exist	in	many	forms”
• Object	polymorphism	 :	objects	of	subclasses	can	be	treated	as	if	

they	are	all	objects	of	the	superclass
• Example:

Dog	dog	=	new	Dog();
Animal	dog	=	new	Dog();

àA	Dog	object	can	be	seen	as	an	Animal	object	as	well

25

Animal
name

Dog

makeNoise()

chaseCats()

Cow
givesMilk
makeNoise()

26

PolymorphismExample
• Normally,

Dog dog = new Dog();

• With	polymorphism:
Animal dog = new Dog();

à The	reference	type	can	
be	a	superclass	of	
the	actual	object	type

27

Polymorphism	Example

Animal[] animals = new Animal[5];

animals[0] = new Dog();
animals[1] = new Cat();
animals[2] = new Wolf();
animals[3] = new Hippo();
animals[4] = new Lion();

for (int i = 0; i < animals.length; i++) {
animals[i].makeNoise();

}

we put objects of any subclasses
of Animal in the Animal array

we can loop through the array and
call Animal-class methods

the cat runs Cat's version of makeNoise(),
the dog runs Dog's version,…

• An	array	is	declared	of	type	Animal.	It	can	hold	
objects	of	Animal's	subclasses

28

Polymorphic	Arguments	&	Return	Types

class Pet {
public void giveVaccine(Animal a) {

a.makeNoise();
}

}

• Parameters	of	type	Animal	can	take	arguments	
of	any	subclasses	of	Animal

Pet p = new Pet();
Dog d = new Dog();
Cat c = new Cat();
p.giveVaccine(d);
p.giveVaccine(c);

it takes arguments of types
Dog and Cat

the Cat's makeNoise() is invoked

the Dog's makeNoise() is invoked

29

class Animal {
String name;
...
public void makeNoise() {

System.out.print ("Hmm.");
}
public void introduce() {

makeNoise();
System.out.println(" I'm " + name);

}
}
class Cat extends Animal {

...
public void makeNoise() {

System.out.print("Meow...");
}

}
class Cow extends Animal {

...
public void makeNoise() {

System.out.print("Moo...");
}

}

Animal pet1 = new Cat("Tom Cat");
Animal pet2 = new Cow("Mini Cow");
pet1.introduce();
pet2.introduce();

Meow... I'm Tom Cat

Moo... I'm Mini Cow

Polymorphism: The same message
"makeNoise" is interpreted differently,
depending on the type of the owner
object

30

Why	care	about	polymorphism?
• With	polymorphism,	you	can	write	code	that	
doesn't	have	to	change	when	you	introduce	
new	subclass	types	into	the	program

Pig

+ makeNoise()

Cow

+ makeNoise()

Duck

+ makeNoise()

Animal
- name

+ makeNoise()
+ introduce()

31

class Pig extends Animal {
public void makeNoise() {

System.out.print("Oi oi...");
}

} class Duck extends Animal {
public void makeNoise() {

System.out.print("Quack quack...");
}

}

class Animal {
...
public void makeNoise() {

System.out.print ("Hmm.");
}
public void introduce() {

makeNoise();
System.out.println(" I'm " + name);

}
}

Animal
- name

+ makeNoise()
+ introduce()

Pig

+ makeNoise()

You can add as many new animal types as you want
without having to modify the introduce() method !

Cow

+ makeNoise()

Duck

+ makeNoise()

32

Object Class
• All	classes	are	subclasses to	the	class	Object
• inherited	methods:

• Class	getClass()
• int hashCode()
• boolean equals()
• String	toString()

Object

equals()
getClass()
hashCode()
toString()

Car

speed

accelerate()
decelerate()

Car c1 = new Car();
Car c2 = new Car();

System.out.println(c1.equals(c2));
System.out.println(c1.getClass() + c1.hashCode());
System.out.println(c1.toString());

equals() and toString()
should be overridden
to work properly

33

