
Exceptions

Object-Oriented	Programming

2

Outline
• Concept	of	exception
• Throwing	and	catching	exceptions
• Rethrowing exceptions
• Tracing	exceptions

3

What	is	Exception?
• Exception	is	an	indication	of	problem that	arises	
during	the	execution	of	a	program

• Exception	happens	in	case	of:
§ Designing	errors
§ Programming	errors
§ Data	errors
§ System	errors
§ ...

import java.io.PrintWriter;
import java.io.File;

class FileWriter {
public static void write(String fileName, String s) {

File file = new File(fileName);
PrintWriter out = new PrintWriter(file);

out.println(s);
out.close();

}
}

4

Example:	Open	File

Open file to write

Compile-time error

5

Example:	Invalid	Input
import java.util.*;
public class TestException
{

public static void main (String args[]) {
Scanner scanner = new Scanner(System.in);
System.out.print("Numerator: ");
int numerator = scanner.nextInt();
System.out.print("Denominator: ");
int denominator = scanner.nextInt();

int result = numerator/denominator;

System.out.printf("\nResult: %d / %d = %d\n",
numerator, denominator, result);

}
}

What happens if input is not
a valid integer?

Runtime error by invalid
integer input “abc”

import java.util.*;
public class TestException
{

public static void main (String args[]) {
Scanner scanner = new Scanner(System.in);
System.out.print("Numerator: ");
int numerator = scanner.nextInt();
System.out.print("Denominator: ");
int denominator = scanner.nextInt();

int result = numerator/denominator;

System.out.printf("\nResult: %d / %d = %d\n",
numerator, denominator, result);

}
}

6

Example:	Divide	by	Zero

What happens if denominator
is zero?

Runtime error by dividing
zero

7

Throwing	exceptions
• Exception	is	thrown	to	an	object that	contains	
information	about	the	error

• throwsclause	– specifies	types	of	exceptions	a	
method	may	throw

• Thrown exceptions	can	be:
• in	method’s	body,	or	
• from	method’s	header

8

Throwing	exceptions
class Fraction {

private int numerator, denominator;

public Fraction (int n, int d) throws ArithmeticException
{

if (d==0)
throw new ArithmeticException();

numerator = n; denominator = d;
}

}

public class TestException2 {
public static void main(String [] args) {

Fraction f = new Fraction (2,0);
}

}

An ArithmeticException object is
created and thrown in method’s
body

Declare what type of
exceptions the method might
throw

import java.util.*;
public class TestException
{

public static void main (String args[]) {
Scanner scanner = new Scanner(System.in);
System.out.print("Numerator: ");
int numerator = scanner.nextInt();
…

}
}

9

Throw	Point

Throw Point

Throw	point is	the	initial	point	at	which	the	
exception	occurs

10

Catching	exceptions
• Syntax:

• Separate	the	code	that	describes	what	you	want	to	do	
(program	logic)	from	the	code	that	is	executed	when	things	
go	wrong	(error	handling)
§ try	block	– program	logic:	encloses		code	that	might	
throw	an	exception	and	the	code	that	should	not	be	
executed	if	an	exception	occurs

§ catch	block	– error	handling:	catches	and	handles	an	
exception

try {
// throw an exception

}
catch (TypeOfException e) {

// exception-handling statements
}

11

Catching	exceptions
• A	catch block	can	catch:

– Exception	of	the	declared	type:
catch (IOException e) {
// catch exceptions of type IOException

}
– Exception	of	a	subclass	of	the	declared	type:

catch (IOException e) {
// catch exceptions of type FileNotFoundException
// or EOFException…

}
• Uncaught	exception:	an	exception	that	occurs	when	there	is	no	

catch blocks	matches

12

How	try and	catchwork?

13

 try {
 int n = scanner.nextInt();
 System.out.print("Ok");
 }
 catch (Exception e) {
 System.out.println("Error! ");
 }
 System.out.println("Done.");

% java Tester
10
Ok
Done.

1

2

the catch block
is skipped

 try {
 int n = scanner.nextInt();
 System.out.print("Ok");
 }
 catch (Exception e) {
 System.out.println("Error! ");
 }
 System.out.println("Done.");

% java Tester
abc
Error!
Done.

1

2

the rest of the try block
is skipped

3

1. No errors

2. The error
is caught
and handled

14

3. The error cannot be caught

 try {
 int n = scanner.nextInt();
 System.out.print("Ok");
 }
 catch (ArithmeticException e) {
 System.out.println("Error! ");
 }
 System.out.println("Done.");
} // end of method

1

the rest of the method,
is skipped

control gets out of the method

15

finally	block

• Optional in	a	try	statement
• Placed	after	last catch	block
• Always	executed,	except	when	

application	exits	from	try	block	by	
method	“System.exit()”

• Often	contains	resource-release	code,	
such	as	file	closing

try {
…
}
catch(Exception1 e1) {
…
}
catch(Exception2 e2) {
…
}
finally {
…
}

16

How	finallyworks?

17

Example:	finally	block
public class TestFinallyBlock {

public static void main(String args[]) {
try {

String a = null;
System.out.println("a is " + a.toLowerCase());

} catch (NullPointerException e) {
System.out.println(e);

} finally {
System.out.println("finally block is always executed");

}
System.out.println("rest of the code");

}
}

18

Java	Exception	Hierarchy

19

Handling	exceptions

• The	goal	is	to	resolve	exceptions	so	that	the	
program	can	continue	or	terminate	gracefully

• Handling	exception	enables	programmers	to	
create	programs	that	are	more	robust	and	
fault-tolerant

20

Exception	handling	methods
Three	choices	to	put	to	a	method:

§ catch	and	handle
§ try	and	catch	blocks

§ pass	it	on	to	the	method’s	caller
§ thrown	exceptions

§ catch,	handle,	then	pass	it	on
§ re-thrown	exceptions

21

Rethrowing exceptions
• Exceptions	can	be	re-thrown	when	a	catch block	decides	that:

– it	cannot	process	the	exception,	or	
– it	can	process	the	exception	only	partially

• Example:
try {...
}
catch (Exception e) {

System.out.println(e.getMessage());
throw e;

}

22

Tracing	exceptions
• Can	use	printStackTrace() to	trace	back	
to	the	point	where	an	exception	was	issued

public class TestFinallyBlock {
public static void main(String args[]) {

try {
String a = null;
System.out.println("a is " + a.toLowerCase());

} catch (NullPointerException e) {
e.printStackTrace();

}
}

}

23

