
Streams	and	Files

Object-Oriented	Programming

2

Outline

• Concepts	of	Data	Streams
• Streams	and	Files
• Manipulate	Text	Files
• Manipulate	Binary	Files
• RandomAccessFile Class

3

Data	Streams
• Data	are	stored	as	a	sequence	of	bytes:

§ But,	we	can	consider	data	as	having	some	higher-
level	structure	such	as	being	a	sequence	of	
characters	or	objects

• Streams:	a	sequence	of	data	that	is	read	from	a	
source	or	written	to	a	destination
§ Source:	file,	memory,	keyboard,…
§ Destination:	file,	memory,	screen,…

• Java	programs	send	and	receive	data	via	objects	
of	some	data	stream	types

4

Data	Streams

• Streams:	may	be	connected	to	a	file	on	floppy,	a	
file	on	a	hard	disk,	a	network	connection	or	may	
even	just	be	in	memory

• We	abstract	away	what	the	stream	is	connected	
to,	and	just	focus	on	performing	I/O	operations	
on	the	stream

5

Types	of	Streams

• Byte	streams:	manipulate	data	in	bytes.	Two	
abstract	classes	are	provided
§ InputStream
§ OutputStream

• Character	streams:	manipulate	data	as	Unicode	
text	streams.	Two	abstract	classes	are	provided
§ Reader	
§ Writer

6

InputStream Hierarchy

7

Methods	of	InputStream

Method Description

int read() reads	next	byte	of	data	from	input	stream

int read(byte[]	 b) reads	“b.length” bytes	from	input	stream	to	
array	“b”

int read(byte[]	 b,	int offset,	int length) reads	“length”	bytes	from	input	stream	to	
array	“b”,	starting	from	the	“offset”	address

void	close() closes	 input stream

8

OutputStream Hierarchy

9

Methods	of	OutputStream

Method Description

int write(int c) writes	the	single	 byte	“c” to	output	stream

int write(byte[]	 b) writes	“b.length” bytes	from	array	“b”	to	
output	stream

int write(byte[]	 b,	int offset,	int length) writes	“length”	bytes	of	array	“b”,	starting	
from	the	“offset”	address	to	output	stream

void	close() closes	 output stream

Void	flush() flushes	 the	data	stream	from	buffer	to
output	stream

10

Reader	Hierarchy

11

Methods	of	Reader

Method Description

int read() reads	next	character	from	input	stream

int read(char[]	 b) reads	“b.length” characters	from	input	
stream	to	array	“b”

int read(char[]	 b,	int offset,	int length) reads	“length”	characters	from	input	
stream	to	array	“b”,	starting	from	the	
“offset”	address	

void	close() Closes input stream

12

Writer	Hierarchy

13

Methods	of	Writer

Method Description

int write(int c) writes	the	single	 character	“c” to	output	
stream

int write(char[]	 b) writes	“b.length” characters	from	array	“b”	
to	output	stream

int write(char[]	 b,	int offset,	int length) writes	“length”	characters	from	array	“b”,	
starting	from	the	“offset”	to	output	stream

void	close() closes	 output stream

void	flush() flushes	 the	data	stream	from	buffer	to
output	stream

14

Important	Types	of	Streams

• InputStream/OutputStream
§ Base	class	streams	with	few	features

• FileInputStream/FileOutputStream
§ Specifically	for	connecting	to	files

• BufferedInputStream/BufferedOutputStream
§ Improve	I/O	performance	by	adding	buffers

• BufferedReader/BufferedWriter
§ Convert	bytes	to	Unicode	Char	and	String	data

Input/output	stream	object

• To	read	or	write	data,	we	need	a	stream	object
• The	I/O	stream	object	needs	to	be	attached	to	a	data	
source	or	a	destination

BufferedReader in =
new BufferedReader(new FileReader(fname));

15

Use	of	buffered	streams
• Buffering is	a	technique	to	improve	I/O	performance

§ Read	and	write	data	in	blocks
§ Reduce	number	of	accesses	to	I/O	devices

• The	program	writes	data	to	the	buffer	instead	of	output	
devices
§ When	the	buffer	is	full,	data	in	buffer	is	pushed	to	the	
device	in	blocks

§ We	can	force	data	to	be	pushed	by	calling	flush()	method
• The	program	reads	data	from	buffer	instead	of	input	devices

§ When	the	buffer	is	empty,	data	is	retrieved	from	the	input	
device	in	blocks

16

Standard	I/O	streams
• In	java.langpackage
• System.out and	System.err are	PrintStream objects

§ Can	be	used	directly
System.out.println("Hello,	world!");
System.err.println("Invalid	day	of	month!");

• System.in is	an	InputStreamobject
§ Used	with	InputStreamReader (character	stream) and		
BufferedReader (stream	with	buffer)
BufferedReaderbr =	new	BufferedReader(

new	InputStreamReader(System.in))

17

The	File	class

• In	java.io package
• Provides	basic	operations	on	files	and
directories
§ Create	files,	open	files,	query	directory	
information

• Files	are	not	streams

18

Create	a	File	object

• File	myFile;
• myFile =	new	File(“data.txt”);
• myFile =	new	File(“myDocs”,	“data.txt”);

• Directories	are	treated	the	same	as	files:
§ File	myDir =	new	File(“myDocs”);
§ File	myFile =	new	File(myDir,	“data.txt”);

19

File's	methods
• File/directory	name

§ String getName()
§ String getPath()
§ String getAbsolutePath()
§ String getParent()
§ boolean renameTo(File newName)

• File/directory	status
§ boolean exists()
§ boolean canWrite()
§ boolean canRead()
§ boolean isFile()
§ boolean isDirectory()

20

File's	methods

• status
§ long lastModified()
§ long length()
§ boolean delete()

• directory
§ boolean mkdir()
§ String[] list()

21

Manipulate	text	files

• Read	from	files
§ FileReader:	read	characters	from	text	files
§ BufferedReader:	buffered,	read	in	lines

• Write	to	files
§ FileWriter:	write	characters	to	text	files
§ PrintWriter:	write	in	lines

22

Read	from	a	text	file

23

public void readLines(String fname) {
try {

BufferedReader in =
new BufferedReader(new FileReader(fname));

String line;
while ((line = in.readLine()) != null) {

System.out.println(line);
}

in.close();
}
catch (IOException e) {

e.printStackTrace();
}

}

Write	to	a	text	file

24

public void writeLines(String fname) {
try {

PrintWriter out = new PrintWriter(new FileWriter(fname));

out.write(“This is the object-oriented programming course”);

out.close();
}
catch (IOException e) {

e.printStackTrace();
}

}

Manipulate	binary	files

• Read
§ FileInputStream:	read	data	from	files
§ DataInputStream:	read	primitive	data
§ ObjectInputStream:	read	objects

• Write	
§ FileOutputStream:	write	data	to	files
§ DataOutputStream:	write	primitive	data
§ ObjectOutputStream:	write	objects

25

DataInputStream/DataOutputStream

• DataInputStream:	 read	primitive	data
§ readBoolean,	readByte,	readChar,	readShort,	readInt,	
readLong,	readFloat,	readDouble

• DataOutputStream:	 write	primitive	data
§ writeBoolean,	writeByte,	writeChar,	writeShort,	writeInt,	
writeLong,	writeFloat,	writeDouble

26

Write	primitive	data

27

import java.io.*;

public class TestDataOutputStream {
public static void main(String args[]) {

int a[] = {65, 75, 86, 67, 98};

try {
// file name is entered as args[0]
FileOutputStream fout = new FileOutputStream(args[0]);
DataOutputStream dout = new DataOutputStream(fout);

for (int i=0; i<a.length; i++)
dout.writeInt(a[i]);

dout.close();
}
catch (IOException e) {

e.printStackTrace();
}

}
}

Read	primitive	data

28

import java.io.*;

public class TestDataInputStream {
public static void main(String args[]) {

try {
FileInputStream fin = new FileInputStream(args[0]);
DataInputStream din = new DataInputStream(fin);

while (true) {
System.out.println(din.readInt());

}
}
catch (EOFException e) {
}
catch (IOException e) {

e.printStackTrace();
}

}
}

File	of	objects
• Objects	can	be	stored
• Data	classes	must	implement	 interface	Serializable

29

import java.io.Serializable;

class Record implements Serializable {
private String name;
private float score;

public Record(String s, float sc) {
name = s;
score = sc;

}

public String toString() {
return "Name: " + name + ", score: " + score;

}
}

30

import java.io.*;

public class TestObjectOutputStream {
public static void main(String args[]) {

Record r[] = { new Record("john", 5.0F),
new Record("mary", 5.5F),
new Record("bob", 4.5F) };

try {
FileOutputStream fout = new FileOutputStream(args[0]);
ObjectOutputStream out = new ObjectOutputStream(fout);

for (int i=0; i<r.length; i++)
out.writeObject(r[i]);

out.close();
}
catch (IOException e) {

e.printStackTrace();
}

}
}

31

public class TestObjectInputStream {
public static void main(String args[]) {

Record r;
try {

FileInputStream fin = new FileInputStream(args[0]);
ObjectInputStream in = new ObjectInputStream(fin);

while (true) {
r = (Record) in.readObject();
System.out.println(r);

}
}
catch (EOFException e) {

System.out.println("No more records");
}
catch (ClassNotFoundException e) {

System.out.println("Unable to create object");
}
catch (IOException e) {

e.printStackTrace();
}

}
}

The	class	RandomAccessFile

• Implement	DataInput interface	to	read	data	
randomly

• Implement	DataOutput interface	to	write	
randomly

32

• Objects	can	be	stored
• Data	classes	must	implement	imterface	
Serializable

33

import java.io.*;

public class WriteRandomFile {
public static void main(String args[]) {

int a[] = { 2, 3, 5, 7, 11, 13 };

try {
File fout = new File(args[0]);
RandomAccessFile out;
out = new RandomAccessFile(fout, "rw");

for (int i=0; i<a.length; i++)
out.writeInt(a[i]);

out.close();
}
catch (IOException e) {

e.printStackTrace();
}

}
}

34

import java.io.*;

public class ReadRandomFile {
public static void main(String args[]) {

try {
File fin = new File(args[0]);
RandomAccessFile in = new RandomAccessFile(fin, "r");

int recordNum = (int) (in.length() / 4);
for (int i=recordNum-1; i>=0; i--) {

in.seek(i*4);
System.out.println(in.readInt());

}
}
catch (IOException e) {

e.printStackTrace();
}

}
}

35

