Algebraic Structure

Tutorial \# 1: Introduction to Algebra

Exercise 1:

Prove that

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

for $n \in \mathbb{N}$

Exercise 2:

Prove that $n!>2^{n}$ for $n \geq 4$

Exercise 3:

Prove that $10^{n+1}+10^{n}+1$ is divisible by 3 for all $n \in \mathbb{N}$

Exercise 4:

Use induction to prove that $1+2+2^{2}+\ldots .+2^{n}=2^{n+1}-1$ for $n \in \mathbb{N}$.

Exercise 5:

Find all $x \in \mathbb{Z}$ satisfying each of the following equations.

$$
\begin{gathered}
3 x \equiv 2(\bmod 7) \\
5 x+1 \equiv 13(\bmod 23) \\
2 x \equiv 1(\bmod 6)
\end{gathered}
$$

Exercise 6:

Solve the following system

$$
\begin{aligned}
& 3 x+7 y \equiv 4(\bmod 11) \\
& 8 x+6 y \equiv 1(\bmod 11)
\end{aligned}
$$

Hint: Use Cayley's table to solve the system

Exercise 7:

Solve the following system

$$
3 x+5 y-7 z \equiv 8(\bmod 83)
$$

$$
\begin{aligned}
8 x-9 y+13 z & \equiv 13(\bmod 83) \\
7 x+4 y+5 z & \equiv 15(\bmod 83)
\end{aligned}
$$

Exercise 8:

Find the inverse of the followin matrix, whose matrices are elements of \mathbb{Z}_{7}

$$
A=\left[\begin{array}{ll}
5 & 2 \\
6 & 3
\end{array}\right]
$$

